BULLETIN 207

GEOL0GY OF THE CALIFORNIA CONTINENTAL MARGIN:

EXPLANATION OF THE CALIFORNIA CONTINENTAL MARGIN GEOLOGIC MAP SERIES—

INTERPRETIVE METHODS SYMBOL0LOGY, STRATIGRAPHIC UNITS, AND BIBLIOGRAPHY

By
Michael P. Kennedy
H. Gary Greene
and
Samuel H. Clarke

1987

Prepared in cooperation with
the U.S. Geological Survey
and the California Coastal Commission

The project was funded in part by California Coastal Commission grant CEIP-890-3720-44-114-21-011; the University of Texas, Austin, grant 14-21-0001-30115; and U.S. Geological Survey, grants 14-08-0001-15858, 14-08-0001-16728 and 14-08-0001-17694.

California Department of Conservation
Division of Mines and Geology
1416 Ninth Street, Room 1341
Sacramento, California 95814
PREFACE

The California Continental Margin Geologic Map Series and this accompanying bulletin have taken five years to complete. This work could not have been done without the assistance and encouragement of many enthusiastic and supportive people. The idea of producing such a map series was conceived in 1975 during discussions between the U.S. Geological Survey (USGS) and the California Coastal Commission (CCC), while formulating the Geological Element to the California Coastal Plan. However, it was not until 1980 that enough data were available for work to begin, and at that time the California Department of Conservation’s Division of Mines and Geology (DMG), with partial funding from the California Coastal Commission, initiated the work. Thus, the publications represent the success of a tripartite (DMG-CCC-USGS) cooperative effort between state and federal government agencies.

Geology, like many sciences, is continuously evolving, and maps portraying geologic interpretations are thus ephemeral. This map series is no exception. However, it is the first standardized offshore geological map series published in the United States, and it does represent a foundation for detailed marine geological mapping. Many data voids exist, as shown on the maps, and new marine geological and geophysical data are being collected that will gradually improve understanding of the geology. Therefore, we foresee the need to modify the maps in the future and we hope to upgrade the series with periodic reprinting. We propose that new map sheets, such as sedimentary isopachs and seafloor resources, be added to the series. We welcome any comment about the maps, and are receptive to constructive criticism. We hope that you find the maps and the method of offshore geology portrayal useful.
Example Seismic Reflection Profiles with Symbols and Terminology (continued)

19. Structural highs and lows ... 27
20. Structural high .. 28
21. Channel (active) .. 29
22. Channel (filled) ... 30
23. Channel (filled) ... 31
24. Channel (filled) ... 32
25. Channel (buried) ... 33
26. Channel (buried) ... 34
27. Levee ... 35
28. Landslide (creep) .. 36
29. Landslide (slump) ... 37
30. Landslide (slump) ... 38
31. Landslide (slump) ... 39
32. Landslide (slump) ... 40
33. Landslide (slump) ... 41
34. Landslide (slump) ... 42
35. Landslide (block glide) ... 43
36. Landslide (block glide) ... 44
37. Landslide (sediment flow) ... 45
38. Gas (seep) ... 46
39. Gas (bright spot, subsurface) ... 47
40. Gas (bright spot, subsurface) ... 48
41. Gas (bright spot, subsurface) ... 49
42. Diapir ... 50
43. Diapir ... 51
44. Terrace (constructional) ... 52
45. Terrace (erosional) ... 53
46. Terrace (erosional) ... 54

Stratigraphic Sections

1. Eel River Basin ... 57
2. Point Arena Basin .. 57
3. Bodega Basin .. 58
4. Outer Santa Cruz Basin ... 58
5. Northern Monterey Bay Region .. 59
6. Southern Monterey Bay Region .. 59
7. Offshore Santa Maria Basin ... 60
8. Northern Santa Barbara Channel ... 60
9. Santa Ynez Unit and Vicinity ... 61
10. Dos Cuadros Oilfield and Vicinity ... 61
11. Don Miguel Island .. 62
12. Santa Rosa Island ... 63
13. Santa Cruz Island .. 64
14. Northeast Coast Santa Cruz Island ... 65
15. Offshore Santa Monica Basin ... 65
16. Northern Santa Rosa - Cortes Ridge ... 66
17. Northern Patton Ridge ... 66
18. Santa Cruz - Catalina Ridge ... 67
19. San Pedro Basin ... 67
20. Newport Beach - Dana Point Shelf ... 68
21. Santa Catalina Island ... 68
22. San Nicolas Island ... 69
Stratigraphic Sections (continued)

<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>San Clemente Ridge</td>
<td>69</td>
</tr>
<tr>
<td>24</td>
<td>Southern Gulf of Santa Catalina</td>
<td>69</td>
</tr>
<tr>
<td>25</td>
<td>San Clemente Island</td>
<td>70</td>
</tr>
<tr>
<td>26</td>
<td>San Nicolas Basin</td>
<td>70</td>
</tr>
<tr>
<td>27</td>
<td>Doll Bank</td>
<td>70</td>
</tr>
<tr>
<td>28</td>
<td>Thirtymile Bank</td>
<td>71</td>
</tr>
<tr>
<td>29</td>
<td>San Diego Shelf</td>
<td>71</td>
</tr>
<tr>
<td>30</td>
<td>Fortymile Bank</td>
<td>71</td>
</tr>
<tr>
<td>31</td>
<td>Central Blake Knolls</td>
<td>72</td>
</tr>
<tr>
<td>32</td>
<td>Cortez Bank</td>
<td>72</td>
</tr>
<tr>
<td>33</td>
<td>Northeast Bank</td>
<td>72</td>
</tr>
</tbody>
</table>
INTRODUCTION

This bulletin is a tool for explorationists, planners and developers with marine geological, geophysical and seismological interests in the California continental margin. It was developed by the California Department of Conservation's Division of Mines and Geology, the U.S. Geological Survey and the California Coastal Commission. We have presented data primarily in planimetric form on map sheets (NOAA/NOS 1:250,000 scale) that cover the area from Mexico north to Oregon and from the California coastline west to the edge of the continental margin (Figure 1). This bulletin is a companion to these map sheets, and presents an explanation of the symbols used in illustrations from marine seismic-reflection profiles, representative composite stratigraphic columns and a comprehensive bibliography of references reviewed or used in the compilation of the maps.

One of the principal purposes of this study was to acquire and compile all readily available geologic data for the California continental margin in a standard format. Although considerable geologic data exist for this area, heretofore no attempt has been made to compile and present it at a common scale with standardized symbology.

Geologic symbols conventionally used onshore have been standardized through years of use. Relatively little effort, however, has been made to develop a standard format for many geologic conditions that are unique to the offshore. Consequently, marine geologic maps that have been produced for offshore areas commonly show inconsistencies in symbology that lead to confusion in interpretation. We present this bulletin in an effort to standardize the symbols needed to illustrate geologic phenomena identified by remote sensing techniques in the marine environment. We hope that this bulletin will assist marine geologists by providing a reference for standard symbols, and general users by providing an explanation of symbols used.

Principal sources of the geologic data used in the compilation of this map series are published, open-file, and publicly available “in progress” studies. The types of data compiled include, where available:

1. General Geology: Geologic structures (folds and faults), bedrock outcrops and (where possible) ages and formational names of units, submarine landslides, oil and gas seeps, shallow gas-charged zones, and areas having unusually high rates of erosion or sediment accumulation.

2. Earthquake epicenter locations superimposed on geologic structure.

3. Focal mechanisms for selected earthquakes superimposed on geologic structure.

4. Regional Bouguer gravity anomalies superimposed on geology and magnetic anomalies.

5. Regional magnetic anomalies superimposed on geology and gravity data.

7. Sources of data used, oil and gas wells, platforms, and ship tracklines of data studied.

1 California Department of Conservation, Division of Mines and Geology
2 U.S. Geological Survey
INTERPRETIVE METHODS

Much of the information presented on the maps and in this bulletin is based on the interpretation of subbottom seismic-reflection data. These data include high-resolution reflection profiles gathered with echo sounder, sparker and mechanical pulsing systems, and intermediate to deep-penetration profiles gathered with 160 kJ sparker, airgun and watergun systems. Subsurface features ranging upward in vertical dimension from approximately 1.0 m to 1.5 m can be resolved in the higher-resolution records that vary in subbottom penetration from 150 m to over 400 m. The deep-penetration records used to determine deep structure can resolve features larger than about 15 m in vertical dimension and commonly record geologic structure at subbottom depths of more than one kilometer.

Ship positioning was accomplished by range-range precision triangulation, augmented in a few remote locations by satellite, radar, and inertial navigation. Location accuracy of the seismic data ranges from about 15 m with precision equipment to about 500 m where the ship’s radar alone was used. Although location accuracy was considered in the map compilation, areas and data sets using different navigation techniques are not distinguished. Therefore, the location accuracy of mapped geologic features varies through each map. The structural notations (i.e., well defined, inferred, and questionable) refer to confidence of interpretation of geological and geophysical data rather than location.

Standard interpretive methods were used in the analysis of seismic-reflection data. For a description of these basic methods, the reader is referred to Moore (1960) and Peyton (1977). Additional criteria used to interpret faults, seafloor stability and hydrocarbons follow.

Faults

Criteria used here for interpretation of faults are based on descriptions by Greene and others (1973). Well-defined faults: (1) distinct displacement of prominent reflectors; (2) an abrupt termination of prominent reflectors, or the juxtaposition of intervals of prominent reflectors that have contrasting acoustic characteristics; or (3) an abrupt change in the dips of reflectors across a distinct boundary.

Inferred faults: (1) small displacement of prominent reflectors, in which the upper or shallow reflectors may be bent rather than broken; (2) prominent reflectors that are discontinuous, and contrasting seismic characteristics that are present on either side of an acoustically obscure disturbed zone; or (3) apparent changes in dip on either side of the disturbed zone.

Questionable faults (mapped where obscure interruptions of seismic reflectors are present in the subsurface): (1) a shift in the phase of reflectors; (2) bent or broken reflectors that can be correlated with known faults on other lines; (3) termination of weak reflectors; or (4) any other zone of seismic contrast, especially where the zone appears similar to and is aligned with faults identified on adjacent lines. Some questionable and inferred faults have been mapped where anomalous topographic lineaments appear to support the continuation of known faults.

The orientation of faults is determined principally by correlation from one seismic line to another. Faults are correlated between adjacent lines mainly on the basis of their association with similar structural and seismic features on adjacent profiles. Where fault planes dip more than about 35°, the vertical exaggeration common to seismic-reflection records precludes determining the dip, even though the records clearly indicate that a fault is present. Consequently, faults dipping 35° or more are shown as vertical.

Determining the amount and direction of movement on a fault is difficult. Only the apparent vertical component (dip separation) of offset can be measured on the seismic-reflection profiles; the horizontal component (strike-slip separation) can be determined only where piercing points of lines representing equivalent geologic features can be identified on opposite sides of a fault. Faults that displace rocks having similar acoustic characteristics are commonly difficult to detect on seismic-reflection records.

The age of most recent faulting as inferred from seismic-reflection records is commonly determined from the age of the youngest reflector cut by a fault. However, such age
assignments may be complicated by several factors so that they may not always accurately reflect fault activity. For example, active faults in some tectonic settings do not penetrate rocks near the earth's surface and are expressed instead by folding at shallow depths. Such faults, though active, might be interpreted as geologically old fractures unless associated seismicity indicates modern activity. Similarly, faults that reach the seafloor in Tertiary or pre-Tertiary rocks where younger deposits are absent might not be identified as geologically youthful unless seismicity data indicate otherwise. Furthermore, in many areas direct physical evidence of the age of rocks cut by a fault is lacking; age assignments in such cases are generally rather loosely constrained by similarities in acoustic character to rocks of known age in other locations. These factors should be borne in mind when using maps derived from seismic-reflection data.

Seafloor Stability

Criteria used for the interpretation of seafloor stability are those described by Clarke and others (1983, 1985). Subaqueous landslides mapped are mass movements of rigid or semi-consolidated sediment masses along discrete shear surfaces, accompanied by relatively little internal deformation (Dott, 1963). Landslides are commonly identified on seismic-reflection records by the presence (in longitudinal sections) of some or all of the following characteristics: (1) a headscarp where the slip surface extends upward to and is expressed in the seafloor; (2) compressionional ridges and folded and contorted subbottom reflectors resulting from small-scale thrusting and folding at the toe of the slide; (3) transverse (tensional) cracks in the body of the slide; (4) evidence of rotation or limited internal deformation of the reflectors; and (5) the presence of a slip surface, which may be upwardly concave or planar, represented by a discrete failure plane or an intensely deformed zone beneath the slip mass.

The term slump is commonly applied to a slide that shows evidence of rotational movement along a curved slip surface, and the term block glide is used for those landslides having a relatively planar, usually gently dipping slide surface. Subaqueous slides may occur on slopes of less than one degree and may range in size from simple failures covering tens of square meters to composite failure zones thousands of square kilometers in area and from a few meters to hundreds of meters thick (Moore, 1961; Heezen and Drake, 1964; Lewis, 1971; Hampton and Bouma, 1977).

Subaqueous mass flows involve the downslope movement under gravity of water-saturated, unconsolidated sediment; the moving mass may behave plastically or as a very viscous fluid, and movement may be slow or rapid (Dott, 1963). The velocity and displacement of flow characteristically decrease gradually with depth below the surface, so that the deposit lacks a distinct slip surface. Subaqueous flow deposits are identified on seismic-reflection records by (1) the presence of anomalously thick sediment masses apparently detached from underlying strata, (2) the absence of identifiable slip planes, and (3) acoustic transparency or chaotic internal structure.

Sediment creep in the marine environment is a form of flow; it is a poorly understood and poorly documented phenomenon. As it is used here, sediment creep refers to the slow, more or less continuous downslope movement of the upper layers of unconsolidated sediment. The occurrence of creep is inferred from seismic-reflection profiles from the presence of hummocky seafloor topography, deformed but identifiable acoustic bedding in the upper sediment layers, a downward decrease in the degree of deformation, and the apparent absence of a slip surface. Creep may extend to subbottom depths of 15-20 m, is commonly associated with other types of failure, and may affect large areas.

Hydrocarbons

Natural gas of biogenic and thermogenic origin may be present in marine sediment. Biogenic gas, principally methane, is derived from bacterial alteration of organic material in sediment. Thermogenic gas, characterized by relatively high levels of hydrocarbons heavier than methane, is a by-product of petroleum formation. The presence of thermogenic gas in sediment can reflect an overpressurized zone that is discharging gas into the overlying strata via a conduit such as a fault or bedding plane. Gas of either type present as bubbles in the pore space of sediment can increase pore pressure and reduce the shear strength of the enclosing sediment, and thus enhance the likelihood of failure. Under some circumstances, sediment containing dissolved gas can liquefy spontaneously when it is subjected to cyclic loading such as may be imposed by earthquake shaking (Hall and Ensiminger, 1979).

Gas accumulation in sediment is suggested on intermediate- to high-resolution seismic records by (1) the presence of acoustic amplitude anomalies (apparent as enhanced or "bright" subbottom reflectors), (2) the sharp termination or displacement of reflectors commonly associated with acoustically turbid zones, (3) the absence of surface multiples indicating absorption of the seismic signal (Nelson and others, 1978), and (4) the presence of "pull-downs," apparent depressions resulting from the decreased velocity of sound in gaseous sediment and consequent delayed arrivals of acoustic returns. Water-column anomalies on high-resolution seismic records in some cases suggest gas bubbles in the water column, although other phenomena such as kelp and fish produce similar appearing features. Side-scan sonographs and underwater video or photographic coverage can show gas seep mounds or gas-developed craters on the seafloor. Several lines of geophysical evidence are desirable, and sampling and geochemical analysis are needed to verify the presence of gas and to identify its origin.
EXPLANATION OF
STRATIGRAPHIC TERMINOLOGY
AND
MAP SYMBOLOGY

Each of the seven maps in the California continental margin geologic map series has a geologic legend and explanation that explains the symbols and terminology used on that particular map. Here we have presented both a legend of stratigraphic units and unit symbols (see Master Legend) and an explanation of other map symbols (see Master Explanation) that are comprehensive in their coverage of the symbols and terminology used in the map series. We have also presented examples of interpreive line drawings of subbottom profiles (along with the seismograms on which they are based) to illustrate the use of the map symbols in specific geological contexts.

Stratigraphic Units

The stratigraphic units used in this study are lithostratigraphic in nature. In most cases, an age or age range is assigned to each unit. The descriptions and the age designations have been established from fairly widespread core, dredge and dart samples offshore and from outcrops, well logs and cores in the immediate onshore. The units were then correlated across large regions using seismic signal characteristics that differ according to inherent rock properties. These units can be referred to informally as "acoustic stratigraphic" or, as described in the North American Stratigraphic Code (code of stratigraphic nomenclature), as instrumentally defined. The ages should be considered part of the general description of each unit, and the reader should be aware that most are naturally time transgressive or regressive in nature.

The order in which the units appear is approximately youngest to oldest, but this order should not be looked upon as superpositional. As the reader will quickly discern, many of the units given in the Master Legend are local in extent.

Geologic Contacts

Geologic contacts shown on the maps are extrapolated from a combination of seismic-reflection data, samples, and bathymetry, and are approximate in location. Unless otherwise specified, the seafloor geology represented on the geologic maps is covered with a thin (several meters) layer of Quaternary or Holocene sediments. Thus, the geologic maps represent seafloor geology as it would appear if the thin layer of Quaternary sedimentary cover were removed. Where faults offset this thin layer of Quaternary sediments, the faults are given the age symbol for the most recent sediments they cut, even though they are shown on the map as existing in an older geologic outcrop (for example, faults of Holocene age are mapped in undifferentiated volcanic and sedimentary rocks of Miocene age on the top of Tanner and Cortez bank).

Symbols

The symbols used in the offshore (see Master Explanation and examples 1-46 of subbottom profiles) to denote specific geologic features are in part different from those traditionally used in onshore geologic mapping. This difference stems from the data acquisition methods used in offshore versus onshore mapping.

Most offshore geologic data are collected by remote sensing techniques that yield acoustic seismograms like those shown with the examples of subbottom profiles. Many of the examples in this section are modified from Greene and others (1975, 1983) and Yerkes and others (1980). Others are selected from data collected and reported on by Kennedy and Welday (1980), Kennedy and others (1980), Field and others (1980), Richmond and others (1981), and Clarke and others (1983).

Each example shows a short reproduced section of the seismic-reflection profile with an interpretive line drawing that emphasizes a particular geologic feature. Beneath each illustration is the symbol used on the maps and a short explanation including the approximate location of the profile. All features considered to be potential geologic hazards are shown in red on the geologic maps. Each example has a number which is keyed to a location map (Figure 2).
MASTER LEGEND OF STRATIGRAPHIC UNITS

Q Unconsolidated deposits of Quaternary age.
Qf Fan deposits of Quaternary age.
Qd Deltaic deposits of Quaternary age.
Q/Qd Deltaic deposits of Quaternary age overlain by thick (>3m) deposits of Q.
Qcf Canyon or channel fill deposits of Quaternary age.
Qt Unconsolidated marine terrace deposits of probable Pleistocene age.
Qp Unconsolidated marine shelf and slope deposits of late Pleistocene age.
Qsp Deposits that may correlate with the San Pedro Formation.
Qar Aromas Red Sands (mostly unconsolidated quartzose sand of Pleistocene age).
Q/Qar Aromas Red Sands (mostly unconsolidated quartzose sand of Pleistocene age) overlain by thick (>3m) deposits of Q.
QTs Sediment and sedimentary rock of Quaternary and Tertiary (Pliocene and Miocene) age.
QTt Terrace deposits of Quaternary and late Tertiary (?) age.
QTpr Unconsolidated sand, gravel, clay and tuff of Pliocene and Pleistocene age that may correlate with the Paso Robles Formation.
Q/QTpr Unconsolidated unit of sand, gravel, clay and tuff of Pliocene and Pleistocene age that may correlate with the Paso Robles Formation, and is overlain by thick (>3m) deposits of Q.
Tp Sedimentary rocks of Pliocene age.
Q/Tp Pliocene rock of Miocene age.
Tpm Plutonic and hypabyssal rocks of Miocene age.

Tmv Volcanic rock of Miocene age.
Tmu Volcanic and sedimentary rocks of Miocene age.
Tsc Santa Cruz Mudstone (siliceous organic mudstone of Miocene age).
Q/Tsc Santa Cruz Mudstone (siliceous organic mudstone of Miocene age) overlain by thick (>3m) deposits of Q.
Tsm Santa Margarita Formation (sandstone and arkose sandstone of Miocene age).
Q/Tsm Santa Margarita Formation (sandstone and arkose sandstone of Miocene age) overlain by thick (>3m) deposits of Q.
Tmm Monterey Formation (siliceous sandstone, siltstone and mudstone of Miocene age).
Q/Tmm Monterey Formation (siliceous sandstone, siltstone and mudstone of Miocene age) overlain by thick (>3m) deposits of Q.

Tmp Plutonic and hypabyssal rocks of Miocene age.
To Sedimentary rock of Ohgocene age.

Te Sedimentary rock of Eocene age.

Tep Sedimentary rock of Eocene and Paleocene age.

Tc Carmelo Formation (sandstone, siltstone, mudstone and cobbly-pebble conglomerate of Paleocene age).

Ts Sedimentary rock of Tertiary age.
Tv Volcanic rock of Tertiary age.

Ku Sedimentary rock of late Cretaceous age.
Kcs Sedimentary rock of Cretaceous age.

TMz Undifferentiated igneous rock of Miocene age and metamorphic rock of pre-late Cretaceous age.

Mz Metamorphic rock of pre-late Cretaceous age.
gr Granite rock, chiefly diorite, of Mesozoic age.

gdp Porphyritic granodiorite.
m Metamorphic rock of unknown age.
Q/m Metamorphic rock of unknown age overlain by thick (>3m) deposits of Q.

KTc Franciscan Complex, Coastal Belt.

KJf Franciscan Complex, undifferentiated.
MASTER LEGEND OF MAP SYMBOLS

GEOLOGIC CONTACT: Queried where contact is uncertain. Contacts are extrapolated from seismic-reflection data and are approximate in location.

FAULTS: Solid where well defined, dashed where approximately located or inferred, queried where uncertain. Thrust fault bars shown on upper plate. Where fault offsets seafloor, age symbol is shown on bar on downthrown side. Elsewhere, age symbol is shown astride fault and relative offset is shown by "D" and "U" on downthrown and upthrown sides. Ages of faults are indicated as follows:

- ■ Cuts strata of Holocene age.
- □ Cuts strata of Pleistocene age.
- ◇ Cuts strata of Quaternary age.
- ○ Cuts strata of late Tertiary and Quaternary age.
- ▲ Cuts strata of Pliocene age.
- △ Cuts Miocene or older strata.

FAULT ZONE

FOLDS: Solid where well defined, dashed where inferred, queried where uncertain. Arrow indicates direction of axial plunge.

- Anticline
- Syncline

MAJOR STRUCTURAL FEATURES:

- Structural High
- Structural Low

CHANNELS:

- Active: Dash-dot line marks axis, arrow indicates direction of sediment transport.

- Buried: Dash-dot line marks axis, arrow indicates direction of paleosediment transport. Channel boundary dotted, queried where uncertain.

LEVEES Solid where well defined, dashed where inferred, queried where uncertain.
LANDSLIDES:

Creep (noted on single survey line): Arrow indicates direction of sediment movement.

Creep (area): Solid where well defined, dashed where inferred, queried where uncertain.

Slump: Solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate direction of movement.

Slump scarp: Solid where well defined, dashed where inferred, queried where uncertain.

Erosional scarp: Solid where well defined, dashed where inferred, queried where uncertain. Generally associated with active channels.

Block glide: Solid where well defined, dashed where inferred, queried where uncertain. Arrow indicates direction of movement.

Sediment flow: Solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate direction of movement.

ATTITUDES:

Strike and dip of bedding.

Apparent strike and dip of bedding.

DIAPIR: Solid where well defined, dashed where inferred, queried where uncertain.

GAS: Oil and/or gas seep.

Area of acoustic anomaly (possibly indicating trapped shallow gas): Solid where well defined, dashed where inferred, queried where uncertain.

Zones in which there is a continuous gas-charged reflector. Reflector is generally shallow (30 m) and lies at, or near, the base of the unconsolidated Quaternary sediment.

Zones of discontinuous gas-charged reflectors. Reflectors lie within upper Miocene and Pliocene sedimentary rock, and within unconsolidated Quaternary sediment.

Area of shallow subsurface continuous and discontinuous gas accumulation within Quaternary sediment Observed on 0.5-second high-resolution (Uniboom) seismic reflection profiles.

Discontinuous gas accumulations within late Tertiary and Quaternary sedimentary deposits. Observed along individual 2-second intermediate-resolution (air gun) seismic-reflection profiles.
Figure 2: Location map for seismic profile examples.
1. GEOLOGIC CONTACT (buttress unconformity)

GEOLOGIC CONTACT: queried where contact is uncertain. All contacts are extrapolated from seismic reflection data and are approximate in location. Example from sparker profile of upper Tertiary and Quaternary (QTs) sediment, ponded in synclinally folded strata on slope of presumed Miocene (Tm?) sediments. Located in the Gulf of Santa Catalina west of Dana Point, inner southern California continental borderland.
2. GEOLOGIC CONTACT (ponded sediment)

GEOLOGIC CONTACT: queried where contact is uncertain. All contacts are extrapolated from seismic-reflection data and are approximate in location. Example from Uniboom profile of Quaternary (Q) sediment ponded in synclinally folded Miocene (TM) sedimentary rock. Located south of San Nicolas Island, middle southern California continental borderland.
GEOLOGIC CONTACT: queried where contact is uncertain. All contacts are extrapolated from seismic-reflection data and are approximate in location. Example from Uniboom profile of unconsolidated Quaternary (Q) sediment ponded between base of slope and exposed bedrock (?) of probable Miocene (TM?) age located in the Gulf of Santa Catalina, inner southern California continental borderland.
4. FAULT (seafloor expression)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Bar and age symbol shown on downthrown side of fault with seafloor expression. Fault displaces seafloor, offsetting acoustically transparent unit (QTs) of presumed late Tertiary and Quaternary age. Example from 3.5 kHz profile across inner southern California continental borderland near San Diego.
5. FAULT (seafloor expression)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Bar and age symbol shown on downthrown side of fault that has seafloor expression. Fault displaces seafloor, offsetting sediments of presumed late Tertiary and Quaternary (QTs) age and juxtaposing subjacent units of Miocene (Tm) and possibly Pliocene (Tp?) ages. Also note inferred fault within probable Miocene section, and folded strata. Example from Uniboom profile across Tanner Bank, middle southern California continental borderland (after Greene and others, 1975, their Figure 3).
6. FAULT (seafloor expression)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Bar and age symbol shown on downthrown side of fault that has seafloor expression. Fault displaces seafloor, offsetting units of late Tertiary and Quaternary (QTs) age and juxtaposing subjacent units of probable Miocene (Tm?) age. Example from sparker profile across mainland shelf, inner southern California continental borderland near Oceanside.
7. FAULT (seafloor expression)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Bar and age symbol shown on downthrown side of fault that has seafloor expression. Divided box indicates youngest strata cut are of Quaternary age. Note that one questionable and four inferred faults cutting Miocene (Tm?) or older strata are indicated by open triangles astride fault symbol. "D" designates downthrown block; "U" designates upthrown block. These strata are also folded, as shown by anticline and syncline symbols. Example from sparker profile across Gulf of Santa Catalina, inner southern California continental borderland.
8. FAULT (Quaternary)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Faults designated by divided boxes indicate that strata of late Tertiary and Quaternary age are cut. One of these has seafloor expression, indicated by bar and age symbol on downthrown side; another reaches but does not displace seafloor, as indicated by age symbol astride fault. "D" designates downthrown block; "U" designates upthrown block. Example from sparker profile within Loma Sea Valley, inner southern California continental borderland.
9. FAULT (Tertiary)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Filled triangle (age symbol) indicates youngest strata cut are Pliocene (Tp) in age. Folded Miocene (Tm) sedimentary rock is overlain by Pliocene strata; both lie in fault contact with exposed bedrock ridge of folded Miocene strata. Example from sparker profile across mainland shelf near Carlsbad, inner southern California continental borderland.
10. FAULT (late Tertiary and Quaternary)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Divided box astride fault symbol indicates fault does not have seafloor expression and that youngest strata cut are of late Tertiary and Quaternary (QTs) age. "D" designates downthrown block; "U" designates upthrown block. Fault extends to base of "bubble pulse," but apparently does not reach the seafloor. Note two unconformities within strata to right of fault. Example from sparker profile across inner southern California continental borderland near Newport Beach.
11. FAULT (late Tertiary and Quaternary)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Open circle astride fault symbol indicates fault does not have seafloor expression and that youngest strata (QTs) cut are late Tertiary and Quaternary in age. Divided box astride fault symbol indicates that the strata cut are undifferentiated Quaternary in age. "D" designates downthrown block; "U" designates upthrown block. Fault at far left juxtaposes late Tertiary and Quaternary (QTs) and older units with an exposed bedrock ridge of Miocene (Tm) rock. Example of fault zone from Uniboom profile across San Diego shelf, Loma Sea Valley, and Coronado Bank, inner southern California continental borderland.
12. FAULT (late Tertiary and Quaternary)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Open circles astride fault symbol indicates faults do not have seafloor expression and youngest strata cut are late Tertiary and Quaternary (QTs) in age. "D" designates downthrown block; "U" designates upthrown block. Where faults are close together, they are sometimes mapped as a FAULT ZONE (see Example 15). Note that fault at left juxtaposes late Tertiary and Quaternary strata with an exposed bedrock block of Miocene (Tm) age. Example from sparker profile across San Diego shelf, Loma Sea Valley, and east flank of Coronada Bank, inner southern California continental borderland.
13. FAULT (late Tertiary and Quaternary)

FAULT: solid where well defined, dashed where inferred, queried where uncertain. Open triangle astride fault symbol indicates fault does not have seafloor expression and strata cut are probably Miocene (Tm?) in age. “D” designates downthrown block; “U” designates upthrown block. Note also the two faults at the far right that are designated by filled box and bar on the fault symbol. These have seafloor expression, and cut strata of presumed Holocene age. Example from sparker profile across San Diego shelf to Loma Sea Valley, inner southern California continental borderland.
14. FAULT (thrust)

FAULT (thrust): solid where well defined, dashed where inferred, queried where uncertain. Barbs are shown on upper plate. Note that the youngest strata cut are of late Tertiary and Quaternary (QTs) age. Example from sparker profile across shelf west of Ventura, middle southern California continental borderland (after Greene and others, 1978, their Plate 1).
15. Fault Zone

Fault Zone: solid where well defined, dashed where inferred, queried where uncertain. Fault zone offsets sedimentary rocks of Miocene (Tm) age and locally may extend to the seafloor. Example from the sparker profile across shelf south of San Mateo Point, inner southern California continental borderland (after Greene and Kennedy, 1981).
16. FAULTED ANTICLINE

FAULTED ANTICLINE: Gas migrating upward along faults in late Tertiary and Quaternary (QTs) strata has accumulated along the faulted anticlinal crest, increasing the acoustic contrast. Example from 2-sec, single-channel airgun reflection record in offshore Santa Maria basin, south central California continental margin.
17. FOLD (anticline)

FOLD (anticline): axis shown as solid line where well defined, dashed where inferred, queried where uncertain. Arrow indicates direction of axial plunge. Also note small syncline to right of anticline, and angular unconformity between undifferentiated igneous and sedimentary rocks of probable Miocene age (Tmu?), and overlying strata of Miocene (Tm) age. Example from Uniboom profile between the Tanner and Cortes Banks, middle southern California continental borderland.
18. FOLD (anticline, syncline)

FOLD (anticline): axis shown as solid line where well defined, dashed where inferred, queried where uncertain. Arrow indicates direction of axial plunge. Also note small syncline located between the two anticlinal folds, and the angular unconformity between folded strata of Miocene (Tm) age and the progradational sequence of Miocene (Tm) sedimentary rocks. Example from Uniboom profile across Son Nicolas Island platform, middle southern California continental borderland.
19. STRUCTURAL HIGH AND LOW

STRUCTURAL HIGHS AND LOWS: solid where well defined, dashed where inferred. Structural highs formed by the Farallon Ridge (Cretaceous granitic rocks, gr, of the Salinian terrane of Siberling and others, 1984) and the Santa Cruz high (Cretaceous subduction melange of Franciscan Complex, KJf) and the intervening structural low filled by late Tertiary and Quaternary sediments of the outer Santa Cruz basin. Line drawing from a 4 second, single-channel sparker profile run across the continental shelf and slope west of Half Moon Bay, offshore central California.
STRUCTURAL HIGH: solid where well defined, dashed where inferred. Top of structural high is surface eroded onto presumed sedimentary rocks (Ts) of Tertiary age buried beneath undifferentiated sedimentary rocks and sediments (QTs) of Tertiary and Quaternary age. Example from sparker profile across the Gulf of Santa Catalina.
21. CHANNEL (active)

CHANNEL (active): dash-dot line marks channel axis, arrow indicates direction of sediment transport. Also note two buried channels beneath the modern seafloor of presumed Quaternary-Tertiary, undifferentiated age to right of active channels. Example from sparker profile across head of Arguelle Canyon, off Point Arguello, central California continental margin.
22. CHANNEL (filled)

CHANNEL (filled): dash-dot line marks paleochannel axis, arrow indicates direction of sediment transport. Channel margins indicated by solid line where well defined, dashed where inferred, queried where uncertain. Also note fault that cuts flat lying sediments of presumed Holocene age and is expressed in the seafloor. Example from Uniboom profile off Point Ana Nuevo, central California continental margin.
CHANNEL (filled): dash-dot line marks paleochannel axis, arrow indicates direction of sediment transport. Channel margins indicated by solid line where well defined, dashed where inferred, queried where uncertain. Example from Uniboom profile of upper Tertiary and Quaternary (QTs) sediments filling an erosional channel located off Point La Jolla, inner southern California continental borderland.
24. CHANNEL (filled)

CHANNEL (filled): dash-dot line marks paleochannel axis (not located on profile above), arrow indicates direction of sediment transport. Channel margins indicated by solid line where well defined, dashed where inferred, queried where uncertain. Note that old channel deposits (Qcf) have been incised by subsequent erosion, resulting in the formation of a modern, active channel. Symbols: QTs, upper Tertiary and Quaternary sediments; Tpp?, Pliocene Purisima (?) Formation. Example from Uniboom profile across Ascension Canyon, central California continental margin.
25. CHANNEL (buried)

CHANNEL (buried): dash-dot line marks paleochannel axis, arrow indicates direction of sediment transport. Channel margins indicated by dotted line. Also note the channel at surface, above and to the left of buried channel, filled with undifferentiated sediments of late Tertiary and Quaternary (QTs) age. A modern channel occupying the site of this older, filled channel may be indicated by the presence of low-relief erosional scars at the surface. Example from sparker profile across the Gulf of Santa Catalina, off Dana Point, inner southern California continental borderland.
26. CHANNEL (buried)

CHANNEL (buried): dash-dot line marks paleochannel axis (not indicated on profile above). Within upper Tertiary and Quaternary (QTs) sediments, the channel margins are indicated by dotted lines. Pulled-down reflectors immediately beneath the channel and incoherent reflectors at depth probably result from low acoustic velocities associated with unconsolidated channel fill materials. Example from sparker profile across the Gulf of Santa Catalina, inner southern California continental borderland.
27. LEVEE

LEVEE: solid where well defined, dashed where inferred, queried where uncertain. Levees constructed from sediment overflow of active submarine channel (shown as dash-dot line with arrow indicating direction of sediment transport). Levees of Quaternary age are deposited upon flat lying strata of sediments and sedimentary rocks of Quaternary and Tertiary, undifferentiated, age (QTs). Example from sparker profile across floor of Gulf of Santa Catalina at base of slope west of San Mateo Point, southern California continental borderland.
28. LANDSLIDE (creep)

CREEP (noted on a single survey line): arrow indicates apparent direction of sediment movement in upper Tertiary and Quaternary (QTs) sediments. Example from Uniboom profile off Oceanside, inner southern California continental borderland.
SLUMP: boundaries solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate direction of movement. Zone of movement extends to a subbottom depth of approximately 20 m. Note hummocky seafloor surface and back-rotated subbottom reflectors (slip surface). Example from Uniboom profile across continental slope off Crescent City, northern California continental margin.
30. LANDSLIDE (slump)

SLUMP: boundaries solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate direction of movement. Zone of movement extends to a subbottom depth of 30 m. Note hummocky seafloor surface, slip surfaces and back rotation of reflectors within moving sediment mass. Example from Uniboom profile across slope west-northwest of Crescent City, northern California continental margin (after Field and others, 1980, their Figure 15).
SLUMP: boundaries solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate direction of movement. Zone of movement extends to a subbottom depth of in excess of 100 m involving sediments of late Tertiary and Quaternary (QTs) age. Note slip surfaces and apparent drag folding of strata adjacent to slip surfaces. Example from Uniboom profile near La Jolla Canyon, inner southern California continental borderland.
32. LANDSLIDE (slump)

SLUMP: boundaries solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate direction of movement. Zone of movement extends to a subbottom depth of approximately 90 m in sediments of late Tertiary and Quaternary (QTs) age. Note apparent slip surfaces and back-rotated reflectors. Example from Uniboom profile across Ascension Canyon, central California continental margin.
SLUMP: boundaries solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate apparent direction of movement in deposits of late Tertiary and Quaternary (QTs) age. Movement of the slump mass along a generally arcuate failure surface has destroyed the bedding and produced a nonreflecting zone. Example from Uniboam profile across the continental slope off outer Santa Cruz basin, central California continental margin.
34. LANDSLIDE (scarps)

SCARPS: boundaries solid where well defined, dashed where inferred, queried where uncertain. Hachures indicate slump scarp. Zone of movement involves sediment of late Tertiary and Quaternary (QTs) age. Note double hachures indicate erosional scarps. Example from Uniboom profile across La Jolla Canyon, inner southern California continental borderland.
35. LANDSLIDE (block glide)

BLOCK GLIDE: boundaries solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate apparent direction of movement. Zone of movement extends to a subbottom depth of 150-190 m, involving sediments of late Tertiary and Quaternary (QTs) age. Note relative acoustic transparency of blocks, possibly the result of intense deformation of strata within the blocks. Erosional channels may develop locally along pull-apart fractures between blocks, shown by double hachures (erosional scarp). Example from sparker profile across base of slope off Newport Beach, inner southern California continental borderland (after Greene and others, 1983, their Figure 2-10).
36. LANDSLIDE (block glide)

BLOCK GLIDE: boundaries solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate apparent direction of movement. Zone of movement extends to a subbottom depth of approximately 90-100 m, involving sediments of late Tertiary and Quaternary (QTs) age. Note that internal deformation of blocks is greatest toward the front edge (downslope), and sole (base) of the mass. Locally, erosional channels may develop along pull-apart fractures between the blocks. These are shown with double hachures (erosional scarp). Example from mini-sparker profile across slope south of Newport Beach, inner southern California continental borderland.
SEDIMENT FLOW: Boundaries solid where well defined, dashed where inferred, queried where uncertain. Arrows indicate direction of movement in sediments of late Tertiary and Quaternary (QTs) age. Note multiple headscars above thick, detached sediment mass, acoustic transparency of this mass, and absence of an identifiable slip surface. Example from Uniboom profile across north slope of Santa Barbara Channel, (approximately 35 km) west of Santa Barbara (from Edwards, 1982).
38. GAS (seep)

OIL AND/OR GAS SEEP: symbol indicates presence of subbottom and water column acoustic anomalies associated with gas seeps. Gas seep occurs in sediments of late Tertiary and Quaternary (QTs) age. Queried where uncertain. Example from Uniboom profile across base of slope off Point La Jolla, inner southern California continental borderland (after Greene and others, 1983, their Figure 2-16).
GAS: area of acoustic anomaly, possibly indicating the presence of gas-saturated sediments. Solid where well defined, dashed where inferred, queried where uncertain. Acoustic anomalies above occur in flat-lying Quaternary (Q) sediment overlying an eroded, flat-topped, Miocene (Tm) bedrock ridge. Example from Uniboam profile across San Pedro escarpment and shelf, middle southern California continental borderland.
40. GAS (bright spot, subsurface)

GAS: area of acoustic anomaly, possibly indicating the presence of gas-saturated sediment. Solid where well defined, dashed where inferred, queried where uncertain. Example from Uniboom profile across shelf and upper slope west of Crescent City, northern California continental margin.
41. GAS (bright spot, subsurface)

GAS: area of acoustic anomaly, possibly indicating the presence of gas saturated sediment. Solid where well defined, dashed where inferred, queried where uncertain. Example from 3.5 kHz profile across shelf off Crescent City, northern California continental margin.
42. DIAPIRIC RIDGE

DIAPIRIC RIDGE: Solid where well defined, dashed where inferred, queried where uncertain. Shale-cored diapir pierces upper Tertiary and Quaternary (QTs) strata and extends above the seafloor. Example from 3.5 kHz profile across marginal plateau west-northwest of Eureka, northern California continental margin.
43. DIAPIRIC RIDGE

DIAPIRIC RIDGE: Solid where well defined, dashed where inferred, queried where uncertain. Shale-cored diapir pierces upper Tertiary and Quaternary (QTs) and older strata and extends above the seafloor. Example from sparker profile across marginal plateau west-northwest of Eureka, northern California continental margin.
44. TERRACE (constructional)

TERRACE (constructional): Example from Uniboom profile across east flank of Cortes Bank, middle southern California continental borderland, showing Pleistocene (QT) progradational terrace sequences forming a constructional or depositional marine terrace (after Greene and others, 1975, their Figure 5).
45. TERRACE (erosional)

TERRACE (erosional): Example from Uniboom profile across shelf off Point La Jolla, inner southern California continental borderland. Undifferentiated, folded Cretaceous strata (Ku) and overlying upper Tertiary and Quaternary (QTs) progradational sequence have been bevelled by wave action. Acoustically transparent unit overlying wave-cut platform is probably Holocene (Q) in age.
46. TERRACE (erosional)

TERRACE (erosional): Wave-plowed, platform composed of undifferentiated, folded Cretaceous (Ku) strata, forming a wave-cut terrace, partially overlain by acoustically transparent layer of Holocene (Q) age. Example from Uniboom profile across shelf off Point La Jolla, inner southern California continental borderland (after Greene and others, 1983, their Figure 2-18).
COMPOSITE STRATIGRAPHIC SECTIONS

The stratigraphic columns are composite, generalized sections developed by compiling and modifying onshore and offshore data from Greene and Clark (1979), Hoskins and Griffiths (1971), Howell and others (1978), McCulloch and others (1982, 1985), Vedder and others (1974, 1976, 1980), and Clarke (1987), as well as from unpublished sources.

Each of the columns shows the generalized geology for the area in which it is located. Each section has a number that is keyed to a location map (Figure 3). The reader should not attempt to correlate the stratigraphic units from the columns to the maps because the maps are constructed primarily from acoustic stratigraphic units and the columns represent rock stratigraphic units exclusively. Rock stratigraphic names are tentatively correlated to acoustic units on the geologic legends only where dredge and core data support their use. The thickness of geologic units shown on the columns is approximate and was derived, where available, from seismic velocities, well logs, and onshore geologic maps.

The reader should note that the diagrammatic stratigraphic columns from Hoskins and Griffiths (1971) included in the text are not individual well sections, but are composite representative sections for entire offshore basins, and that the indicated thicknesses are the interval maximum for the entire basin.

Figure 3

Areas

1. Eel River Basin .. 1
2. Point Arena Basin ... B
3. Bodega Basin .. B
4. Outer Santa Cruz Basin ... B
5. N. Monterey Bay Region ... A
6. S. Monterey Bay Region ... A
7. Offshore Santa Maria Basin B
8. N. Santa Barbara Channel (OCS-CAL 78-164 No. 1)
9. Santa Ynez Unit and vicinity C,G
10. Dos Cuadros oilfield and vicinity G,H
11. San Miguel Island .. F
12. Santa Rosa Island .. F
13. Santa Cruz Island .. F
14. N.E. Coast Santa Cruz Island C,G
15. Offshore Santa Monica Basin C,G
16. N. Santa Rosa - Cortes Ridge C,G
17. Northern Patton Ridge ... C,G
18. Santa Cruz - Catalina Ridge C,G
19. Son Pedro Basin .. C,G
20. Newport Beach - Dana Pt. Shelf C,G
21. Santa Catalina Island .. F
22. San Nicolas Island ... F
23. Son Clemente Ridge .. C,G
24. S. Gulf of Santa Catalina C,G
25. San Clemente Island ... G

26. San Nicolas Basin ... C,G
27. Dall Bank .. C,G
28. Thirtymile Bank .. C,G
29. San Diego Shell .. C,G
30. Fortymile Bank .. C,G
31. Central Blake Knolls .. C,G
32. Cortes Bank ... C,G
 (OCS-CAL 75-70 No. 1)
33. Northeast Bank .. C,G

Figure 3

References

Figure 3. Location map for stratigraphic sections.
1. Eel River Basin

2. Point Arena Basin
3. Bodega Basin

4. Outer Santa Cruz Basin
5. Northern Monterey Bay Region

AGES

- Holocene
- Pleist.
- Pliocene
- Miocene
- Mesozoic or Older

METERS

- Surficial deposits
- Aromas Sand
- Deltaic material
- Purisima Fm.
- Unconformity
- Santa Cruz Mudstone
- Santa Margarita (?) Sandstone
- Unconformity
- Monterey Fm.
- Unconformity
- Granitic Basement

6. Southern Monterey Bay Region

AGES

- Holocene
- Pleist.
- Pliocene
- Miocene
- Mesozoic or Older

METERS

- Surficial deposits
- Deltaic deposits
- Aromas Sand
- Paso Robles Fm.
- Purisima Fm.
- Unconformity
- Monterey Fm.
- Unconformity
- Granitic Basement
7. Offshore Santa Maria Basin

8. Northern Santa Barbara Channel
(OSC-CAL 78-164 No. 1)
9. Santa Ynez Unit and vicinity

10. Dos Quadrans Oilfield and vicinity
11. San Miguel Island

![Stratigraphic chart showing the geological layers of San Miguel Island. The chart includes layers from the Cretaceous, Paleocene, Eocene, Oligocene, Miocene, and Quaternary periods. The thickness of each layer is indicated in meters, with a note for an unconformity.]
12. Santa Rosa Island

AGE

QUATERNARY

TERTIARY

Miocene

Lower

Middle

Oligocene

Eocene

CRETACEOUS

Thickness

(Meters)

unconformity

100

1800

400

2900

1250

4000

Fault

?
13. Santa Cruz Island
14. Northeast Coast Santa Cruz Island

15. Offshore Santa Monica Basin
16. Northern Santa Rosa-Cortes Ridge

17. Northern Patton Ridge
18. Santa Cruz–Catalina Ridge

AGE

- **Quat.**
- **Holocene**
- **Pliocene**
- **Miocene**
- **Mesozoic (?)**

Thickness (Meters):
- **Quat.:** 60
- **Holocene:** 50
- **Pliocene:**
- **Miocene:** 640
- **Mesozoic (?)**

Older strata (?)

Catalina Schist

Thicknesses inferred in part

19. San Pedro Basin

AGE

- **Tertiary**
 - **Quat.**
 - **Holocene/Pleistocene**
 - **Pliocene**
 - **Miocene**
 - **Mesozoic**

- **Lithologies inferred in part:**
 - Monterey Shale (north edge)
 - Catalina Schist

- "Pico" Formation

- "Repetto" Formation (central)
20. Newport Beach—Dana Point Shelf

21. Santa Catalina Island
22. San Nicolas Island

23. San Clemente Ridge

24. Southern Gulf of Santa Catalina
25. San Clemente Island

26. San Nicolas Basin

27. Dall Bank
28. Thirtymile Bank

San Diego Formation

(Coronado Bank)
Unconf. Monterey Shale
La Jolla Group
Cabrillo Formation
Pt. Loma Formation
Unconf. Lusardi Formation
S. C. batholith
Santiago Peak Volcanics

29. San Diego Shelf

30. Fortymile Bank

Unconformity
Catalina Schist

Lithologies inferred in part
31. Central Blake Knolls

32. Cortes Bank
(OSC–CAL 75–70 No. 1)

33. Northeast Bank
BIBLIOGRAPHY

This bibliography includes those references studied and, in part, used to compile the California continental margin geologic maps. Also included are references that, because of their scale or subject, were not used directly in this compilation, but which may be useful to investigators involved in geologic studies within the region. The references consist of published geologic data and unpublished Master's and Doctoral theses that are readily available, as well as open-file reports, administrative reports and recently released proprietary data.

Arnal, R.E., 1980, Comparison of Miocene provincial foraminiferal stages to Coccolith zones in the California continental borderland, Comment: Geology, v. 8, p. 2-4.

Ashley, R.J., 1974, Offshore geology and sediment distribution of the El Capitan - Gaviota continental shelf, north Santa Barbara Channel, California: San Diego State University unpublished Master's Thesis.

Bailey, E.H., 1954, Road log for Santa Catalina Island: Geological Society of America field trip, map: Generalized geologic map of Santa Catalina Island, scale 1:82,000.

Birkeland, P.W., 1972, Late Quaternary eustatic sea level changes along Malibu coast, Los Angeles County, California: Journal of Geology, v. 80, p. 432-448.

Bishop, C.C., and Chapman, R.H., 1967 (revised 1980), Bouger gravity map of California, Santa Cruz sheet: California Division of Mines and Geology, scale 1:250,000.

Blake, M.C., Jr., Jones, D.L., and Landis, C.H., 1974, Active continental margins: contrasts between California and New Zealand, in

Blake, W., 1855, Observations on the physical geography and geology of the coast of California, from Bodega Bay to San Diego: U.S. Coast and Geodetic Survey Annual Report, no. 65, p. 376-398.

Bloom, L., Smith, D.R., and Osborne, R.H., 1979, Examination of sand transport from the Santa Clara River watershed through the southern Santa Barbara littoral cell by means of grain surface microtextures and Fourier grain shape analysis: Geological Society of America Abstracts with Programs, v. 11, p. 71.

Bowers, S., 1878, Geology at Santa Rosa Island: Smithsonian Institute Annual Report for 1877, p. 316-320.

Brown, R.D., 1972, Faults that are historically active or that show evidence of geologically young surface displacement, San Francisco Bay region, a progress report: October 1970: U.S. Geological Survey Miscellaneous Field Studies Map 331, scale 1:250,000.

Brown, R.D., Jr., and Wolfe, E.W., 1973, Map showing recently active breaks along the San Andreas fault between Point Delgada and Bolinas Bay, California: U.S. Geological Survey Miscellaneous Investigation 692, scale 1:24,000.

GEOLOGY OF THE CALIFORNIA CONTINENTAL MARGIN

1987

Campbell, R.H., 1973, Generalized geologic map and structure sections, Santa Clara River to Santa Monica Bay, southern California, in Cretaceous stratigraphy of the Santa Monica Mountains and Simi Hills: Society of Economic Paleoentologists and Mineralogists, Pacific Sections, Fall Field Trip Guidebook.

Chapman, R. H., and Bishop, C. C., 1968, Bouguer gravity map of California, San Francisco sheet: California Division of Mines and geology, scale 1:250,000.

Clements, T., and Dana, S. W., 1944, Geologic significance of a coarse marine sediment from near Santa Catalina Island, California: Journal of Geology, v. 52, p. 351-354.

Crawford, J.K., and Bachman, S.B., editors, 1984, Tectonics and sedimentation along the California margin: Society of Economic Paleontologists and Mineralogists, Pacific Section, Los Angeles, California, 188 p.

Crawford, J.K., and Bukry, D., 1980, Comparison of Miocene provincial foraminiferal stages to Coccolith zones in the California continental borderland, Reply: Geology, v. 8, p. 4-5.

Dames and Moore, 1978, Preliminary geotechnical investigation of offshore, beach, and seaciff areas—proposed LNG marine terminal near Point Conception, California—report for Western LNG Terminal Associates: Dames and Moore, Los Angeles, California, Job Nos. 0011-207-02 and 0011-209-02.

Dill, R.F., 1969. Deeply submerged terraces and low sea cliffs on the continental slope of southern California, Baja California, Mexico, and Australia: Geological Society of America Special Paper, v. 121, p. 75-76.

Durham, J.W., 1956, Pacific coast Creteocees from Vancouver Island to Baja California: Twentieth International Geological Congress, Mexico, Resumenenes de los trabajos presentados, supplement 4, p. 331.

Erickson, J.W., 1972, Paleoslope and petrographic analysis of the South Point Formation, Santa Rosa Island, California: University of California, Santa Barbara, unpublished Master's Thesis.

Fischer, P.J., 1976, Late Neogene-Quaternary tectonics and depositional environments of the Santa Barbara basin, California, in Frithsche, A.E., Terbest, J., Jr., and Warnhardt, W.W., editors, The
Neogene symposium: Society of Economic Paleontologists and Mineralogists, Pacific Section, p. 33-52.

Fischer, P.J., Rudol, J., and Ticken, E., 1979, Recognition of active (Holocene) faulting, southern California borderland: Geological Society of America Abstracts with Programs, v. 11, p. 78.

Goodyear, W.A., 1890, San Diego County, Santa Cruz Island: California State Mineralogists, 9th Annual Report, p. 139-170.

Gorsline, D.S., and Barnes, P.W., 1970, Evidence for Holocene climatic changes from Tanner and Santa Cruz basins, California continental borderland: American Quaternary Association's first meeting, p. 54.

Harrison, J.C., 1960, Gravity measurements in the southern continental borderland west of Baja California, interim report: Institute of Geophysics and Planetary Physics, University of California, Los Angeles, 65 p.

Hoyt, D.H., Geology and recent sediment distribution from Santa Barbara to Rincon Point, California: San Diego State University unpublished Master's Thesis.

Hutton, C.O., 1959, Mineralog of beaches sands between Halfmoon and Monterey bays, California; California Division of Mines and Geology Special Report 59, 32 p.

Ingle, J.C., Jr., 1976, Late Neogene paleobathymetry and paleoenvironments of the Humboldt basin, northern California, in Fritz, A.E., Terbest, H., and Wornhardt, W.W., editors, The
Neogene symposium: Society of Economic Paleontologists and
Mineralogists, Pacific Section, Los Angeles, p. 53-61.

Ingle, J.C., Jr., 1977, Cenozoic paleoclimatic trends, history of the
California current, and Pacific coast biostatigraphy: Geological
Society of America Abstracts with Programs, v. 9, p. 1032-1033.

Ingle, J.C., Jr., 1978, Evidence of latest Miocene refrigeration and
associated eustatic events in California and the North Pacific:
Geological Society of America Abstracts with Programs, v. 10,
pp. 427.

Ingle, J.C., Jr., 1979, Cenozoic climatic history and marine geo-
stratigraphy of the Pacific coast of North America: Pacific
Sciences Congress, Section B(ll, Kobarovsk USSR, August 1979,
p. 63-65.

Ingle, J.C., Jr., 1979, Correlation of continental-margin and deep-
sea sequences; Neogene examples from the Pacific: American

Ingle, J.C., Jr., 1979, The Humboldt (Eel River) basin of northern
California, a high latitude Pacific Neogene reference section:
Pacific Science Congress XIV, Section B(ll, Kobarovsk USSR,

Ingle, J.C., Jr., 1980, Cenozoic paleobathymetry and depositional
history of selected sequences within the southern California contin-
ental borderland: Cushman Foundation Special Publication No.
19, Memorial to Oroville L. Bondy, p. 163-195.

Ingle, J.C., Jr., 1981, Origin of Neogene diatomites around the
North Pacific rim, in The Monterey Formation and related sili-
ceous rocks of California: Society of Economic Paleontologists
and Mineralogists, p. 159-179.

Ingle, J.C., Jr., and Keller, G., 1980, Benthic foraminiferid biofacies
of eastern Pacific margin between 32° South and 32° North:
444.

Inman, D.L., 1950, Submarine topography and sedimentation in the
vicinity of Muig submarine canyon, California: U.S. Beach Eros-
ion Board, Technical Memorandum 19, 45 p.

Inman, D.L., 1954, Beach and nearshore processes along the south-
ern California coast, in Johns, R.H., editor, Geology of southern
California: California Division of Mines and Geology Bulletin
170, p. 29-34.

the southern California coast: Twenty-first International Geologi-
cal Congress, Copenhagen, p. 245-246.

Inman, D.L., and Goldberg, E.D., 1963, Petrogenesis and deposi-
tional rates of sediments from the experimental Mohole drilling off
Lo Jollo, California: American Geophysical Union Transactions,
v. 44, p. 68.

Israelsky, M.C., 1956, Some foraminifera from rocks of Eocene age
on San Nicolas Island, Ventura County, California: Journal of
Paleontology, v. 30, p. 1028.

Jochens, R.C., and Griscom, A., 1983, Three-dimensional geometry of
the Gorda plate beneath northern California: Journal of Geo-
physical Research, v. 88, p. 9375-9392.

Jackson, P.A., 1981, Structural evolution of the Carpinteria basin,
western Transverse Ranges, California: Oregn State University,

Johns, R.H., Hill, M.L., LeConte, J., Moore, D.G., Scott, R.F., Smith,
J.L., and Smith, S.W., 1971, Geologic structure of the continental
shelf off San Onofre, regional relationships and influence on
seismicity: Unpublished report to Southern California Edison
Company and San Diego Gas and Electric Company for consider-
ation in earthquake resistant design of Units 2 and 3 of the San
Onofre nuclear generating station, San Clemente, California, 55
p.

Jennings, C.W., 1969, Wave refraction near San Pedro Bay, California:
Waterways Harbors Division, Proceedings American Society Civil

Jennings, C.W., 1959, Geologic map of California, Santa Cruz
sheet: California Division of Mines and Geology, scale 1:250,-
000.

Jennings, C.W., 1959, Geologic map of California, San Luis Obispo
sheet: California Division of Mines and Geology, scale 1:250,-
000.

Jennings, C.W., 1959, Geologic map of California, Santa Maria
sheet: California Division of Mines and Geology, scale 1:250,-
000.

Jennings, C.W., 1960, Geologic map of California, Ukiah sheet:
California Division of Mines and Geology, scale 1:250,000.

Jennings, C.W., 1961, Geologic map of California, San Francisco
sheet: California Division of Mines and Geology, scale 1:250,-
000.

Jennings, C.W., 1962, Geologic map of California, Long Beach
sheet: California Division of Mines and Geology, scale 1:250,-
000.

Jennings, C.W., 1962, Geologic map of California, Redding sheet:
California Division of Mines and Geology, scale 1:250,000.

Jennings, C.W., 1962, Geologic map of California, San Diego - El
Centro sheet: California Division of Mines and Geology, scale
1:250,000.

Jennings, C.W., 1963, Geologic map of California, Santa Rosa
sheet: California Division of Mines and Geology, scale 1:250,-
000.

Jennings, C.W., 1964, Geologic map of California, Weed sheet:
California Division of Mines and Geology, scale 1:250,000.

Jennings, C.W., 1966, Geologic map of California, San Ana sheet:
California Division of Mines and Geology, scale 1:250,000.

Jennings, C.W., 1975, Preliminary fault and geologic map of south-
ern California, in Crowell, J.C., editor, San Andreas fault in south-
er California: California Division of Mines and Geology
Special Report 118, plate 1.

Jennings, C.W., 1977, Geologic map of California, California Data
Map Series, California Division of Mines and Geology, scale
1:750,000.

Jennings, C.W., and Strand, R.G., 1969, Geologic map of Califor-
nia, Los Angeles sheet: California Division of Mines and Geology,
scale 1:250,000.

Jennings, C.W., Strand, R.G., Rogers, T.H., Baylan, R.T., Moor, R.R.,
and Switzer, R.A., 1977, Geologic map of California: California
Division of Mines and Geology, Geologic Data Map No. 2.

Jennings, C.W., Strand, R.G., Rogers, T.H., Stonson, M.C., Burnett,
J.L., Kohle, J.E., and Streitz, R., 1973, State of California prelimi-
ary fault and geologic map, California Division of Mines and Ge-
ology.

Jennings, C.W., Strand, R.G., Rogers, T.H., Stonson, M.C., Burnett,
J.L., Kohle, J.E., Streitz, R., Switzer, R.A., and Moor, R.R., 1975,
Fault map of California with locations of volcanoes, thermal
springs, and thermal wells, California Division of Mines and Ge-
ology, Geologic Data Map No. 1.

Johnson, D.L., 1967, Caliche on the Channel Islands: California Divi-
sion of Mines and Geology, Mineral Information Service, v. 20,
p. 151-158.

Johnson, D.L., 1969, Beachrock (water table rock) on San Miguel
Island, in Weaver, D.W., editor, Geology of the northern Chan-
nel Islands, southern California borderland: American Asso-

Johnson, J.D., 1972, Anomalous seismicity on the continental shelf
of central California: Geological Society of America Abstracts
with Programs, v. 4, p. 554.

Johnson, J.W., 1974, Bolinas Lagoon inlet, California: U.S. Army,
Coastal Engineering Research Center, Miscellaneous Paper,
Washington, D.C., No. 3-74, 46 p., illustrations (including sketch
map).

Joy, J.E., 1968, Tsunamis and their occurrence along the San Diego County coast: Unpublished report to the Unified San Diego County Civil Defense and Disaster Organization.

Junger, A., 1979, Maps and seismic profiles showing geologic structure of the northern Channel Islands platform, California continental borderland: U.S. Geological Survey Miscellaneous Field Studies Map, MF-991, scale 1:250,000.

Keller, G.J., 1957, Distribution of brown sand off the coast of California and Baja California: University of Southern California unpublished report in Marine Geology, 19 p.

Kemmler, L.E., 1933, Geology of San Nicolas and Santa Barbara Islands, southern California: California Institute of Technology unpublished Master's Thesis.

Kennett, W.E., 1944, Geologic map of Santa Cruz Island: Unpublished Superior Oil Company Map, scale 1:46,000.

Kennett, W.E., 1952, Channel island columnar sections, in Redwine, L.E., and others, editors, Cenozoic correlation section, western Ventura basin from Point Concepcion to Ventura and Channel Islands, California: American Association of Petroleum Geologists, Pacific Section, Geological Names and Correlation Committee, Subcommittee on Cenozoic, 1 sheet.

Kennett, W.E., 1952, Cenozoic correlation section, western Ventura basin from Point Concepcion to Ventura and Channel Islands, California: American Association of Petroleum Geologists, Pacific Section, 2 sheets.

Knap, E.C., 1938, Santa Catalina, minerals and geology: Pacific Mineralogist, v. 5, p. 3-5.

Guidebook, no. 1, Geological Society of America, 92nd Annual Meeting, p. 1-16.

Legg, M.R., Agnew, D.C., and Simons, R.S., 1977, Earthquake history and recent seismicity of coastal San Diego County, California, 1800-1976; in Kuhn, G., editor, Coastal zone geology and related sea cliff erosion: San Diego River to San Elijo Lagoon, San Diego County, California: San Diego County Board of Supervisors Project Study 11596-0800E-KUHN.

Marlette, J.W., 1954, The breakwater at Redondo Beach, California, and its effects on erosion and sedimentation: University of Southern California unpublished Master’s Thesis.

McCulloch, D.S., 1980, Faults and late Miocene folds in the offshore Santa Maria Basin Point Arguello area, California, for U.S. Bureau of Land Management report, 1 map, scale 1:250,000.

Milow, E.D., 1957, La Jolla and San Diego basins, western San Diego County, California: Society of Economic Paleontologists and Mineralogists, Pacific Section Guidebook, 10 p.

Minster, J.B., and Jordan, T.H., 1984, Vector constraints on Quaternary deformation of the western United States east and west of the San Andreas fault, in Crouch, J.K., and Bachman, S.B., editors, Tectonics and sedimentation along the California margin: Pacific Section SEPM, v. 38, p. 1-16.

Moore, G.W., 1975, Acoustic-reflection profiles, R/V POLARIS, November-December, 1970, offshore southern California, Part Hue-

Moore, G.W., and Luken, M.D., 1979, Offshore sand and gravel resources of the Pacific northwest: Oregon Geology, v. 41, no. 9, p. 143-151.

Marner, N.A., 1983, Comment on "Tectonic uplift of a middle Wisconsin marine platform near the Mendocino triple junction, California": Geology, v. 11, p. 621.

Muhs, D.R., 1979, Marine terrace age assignments, uplift rates and sea level events on San Clemente Island, California: Geological Society of America Abstracts with Programs, v. 11, no. 7, p. 484.

Murray, S.M., 1972, Diagenesis of sediment in the Santa Barbara basin of the California basin; University of Southern California unpublished Master's Thesis.

depositional environments of the Pacific Coast: Society of Economic Paleontologists and Mineralogists, Pacific Section, Pacific Coast Paleontologic Symposium 4, p. 143-156.

Patterson, R.H., 1979, Tectonic geomorphology and neotectonics of the Santa Cruz Island fault, Santa Barbara County, California: University of California, Santa Barbara, unpublished Doctoral Thesis, 140 p.

Pilger, R.H., Jr., 1976, Structure of Santa Cruz - Catalina Ridge and adjacent areas, southern California continental borderland, from reflection and magnetic profiling; implications for late Cenozoic tectonics of southern California: University of Southern California, unpublished Doctoral Thesis.

Pisios, N.G., 1978, Paleoceanography of the Santa Barbara basin during the last 8,000 years: Quaternary Research, p. 366-384.

Pisios, N.G., 1979, Model for paleoceangraphic reconstructions of the California current during the last 8,000 years: Quaternary Research, v. 11, p. 373-386.

Polski, W., 1957, Varied sediments in a core from the Santa Barbara basin off the California coast: University of Southern California unpublished report, 15 p.

Pratt, W.L., Jr., 1956, Glauconite casts in some bottom sediments from Santa Monica Bay and Santa Rosa Ridge off southern California: University of Southern California, unpublished report, 19 p.

Pratt, W.L., Jr., 1962, The origin and distribution of glauconite from the sea floor off California and Baja California: University of Southern California, unpublished Doctoral Thesis.

Rand, W.W., 1931, Preliminary report of the geology of Santa Cruz Island, Santa Barbara County, California, in Mining in California: California State Mineralogist Report, v. 27, p. 214-219.

Ross, D.C., and McCulloch, D.S., 1979, Cross section of the southern Coast Ranges and San Joaquin Valley from offshore Point Sur to Madera, California: Geological Society of America Map and Chart Series MC-2, 1 sheet.

Guidebook. Far Western Section of the National Association of Geology Teachers, p. 28-53.
Stearns, R.E., 1875, Discovery of fossil teeth of an elephant on Santa Rosa Island, California: California Academy of Science Proceedings, v. 5, p. 152.
Steritz, J.W., 1986, Southern termination of the Hosgri fault zone, offshore California: Geology Department, University of California at Santa Barbara.
Stevenson, R.E., and Terry, R.D., 1957, Bottom materials and topography of the shelf between Point Conception and San Diego, in Oceanography and marine geology of the southern California shelf: University of Southern California Intern Report submitted to State Water Pollution Control Board, p. 24-74.
Stevenson, R.E., Uchupi, E., and Gorsline, D.S., 1959, Some characteristics of sediments on the mainland shelf of southern California, in Oceanographic survey of the continental shelf areas of southern California: California State Water Pollution Control Board Publication 20, p. 59-109.

Trask, P.D., 1928, Sedimentation in the Channel Islands region, California: Economics of Geology, v. 26, p. 24-43.

Upson, J.E., 1949, Late Pleistocene and recent changes of sea level along the coast of Santa Barbara County, California: American Journal of Science, v. 247, p. 94-115.

Weaver, D.W., and Wilhelm, V.H., 1943, Huntington Beach oil field, in Geologic formations and economic development of the oil and gas fields of California: California Division of Mines Bulletin 118, p. 329-331.

Weber, F.H., Jr., 1963, Geology and mineral resources of San Diego County, California: California Division of Mines and Geology County Report 3.

West, J.W., 1955, Geology of the southwestern part of the Malibu Beach quadrangle, Los Angeles County, California: University of California, Los Angeles, unpublished Master's Thesis.

CALIFORNIA CONTINENTAL MARGIN GEOLOGIC MAP SERIES
MASTER LEGEND AND EXAMPLE SEISMIC REFLECTION PROFILES
WITH SYMBOLS AND TERMINOLOGY. (PLATE 1)

7. FAULT
(seafloor expression)
FAULT: solid where well defined, dashed where inferred, quilled where uncertain. Bar and age symbol shown on downthrown side of fault with surface expression. Faults display seafloor, reflecting structurally transport, or are of Quaternary age and Quaternary and Late Tertiary age. Example from master legend across active southern California continental borderland near San Diego.

4. FAULT (Quaternary and Late Tertiary)

5. FAULT (Quaternary and Late Tertiary)

6. FAULT (Quaternary and Late Tertiary)

7. FAULT (Quaternary and Late Tertiary)

8. FAULT (Quaternary and Late Tertiary)

9. FAULT (Quaternary and Late Tertiary)

10. FAULT (Continental Margin)

11. FAULT (Continental Margin)

12. FAULT (Continental Margin)

13. FAULT (Continental Margin)

14. FAULT (Continental Margin)

15. FAULT (Continental Margin)

FAULT ZONE: solid where well defined, dashed where inferred, and shaded where uncertain. Faults display seafloor, reflecting structurally transport, or are of Quaternary age and Quaternary and Late Tertiary age. Example from master legend across active southern California continental borderland near San Diego.

Example from master legend across active southern California continental borderland near San Diego.
LOCATION MAP OF PROFILE EXAMPLES

Index map showing locations of sections, profiles, examples. Locations of examples are approximate and the ordering may be changed for ease of reproduction. The same scale is used for all examples. Example number is shown on index map. Example 1 is shown in black, example 2 is shown in red, example 3 is shown in blue, example 4 is shown in green, example 5 is shown in yellow, example 6 is shown in purple. Each example is shown on a separate sheet of paper and is drawn to scale. Each example is shown in black, example 2 is shown in red, example 3 is shown in blue, example 4 is shown in green, example 5 is shown in yellow, example 6 is shown in purple.

KEY TO REGENCY OF FAULTING

FAULTS

- Solid lines show active fault lines. White lines show the inferred fault line orientation.
- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.

- Black lines show active fault lines. White lines show the inferred fault line orientation.
- Red lines show active fault lines. White lines show the inferred fault line orientation.
- Blue lines show active fault lines. White lines show the inferred fault line orientation.
- Green lines show active fault lines. White lines show the inferred fault line orientation.
- Yellow lines show active fault lines. White lines show the inferred fault line orientation.
- Purple lines show active fault lines. White lines show the inferred fault line orientation.
19. STRUCTURAL HIGH AND LOW

20. STRUCTURAL HIGH

21. CHANNEL (active)

22. CHANNEL (filled)

23. CHANNEL (active)

24. STRUCTURAL HIGH

25. LEVEE

26. CHANNEL

27. LEVEE

28. LANDSLIDE (creep)

29. LANDSLIDE (slump)

30. LANDSLIDE (slide)

31. LANDSLIDE (block slide)

32. LANDSLIDE (sand slide)

33. LANDSLIDE (mudslide)

34. LANDSLIDE (water slide)

35. LANDSLIDE (landslide)

36. LANDSLIDE (block slide)

37. LANDSLIDE (sediment flow)

38. GAS (flow)
30. LANDSLIDE (slump)
31. LANDSLIDE (slump)
32. LANDSLIDE (slump)
33. LANDSLIDE (slump)
34. LANDSLIDE (slump)

SLUMP transitions solid where well-defined, dashed where altered, greenish where uncertain. Arrows indicate inferred directions of movement. Zones of movement extend to a sub-aqueous depth of approximately 40 m. The implications are shown in the profiles of the terraces and barriers. (Qf) age. Note changes in slope, and thickness variations. Example from Unnamed profile near S. Jolla Canyon, near northern California continental shelf.

SLUMP transitions solid where well-defined, dashed where altered, greenish where uncertain. Arrows indicate inferred directions of movement. Zones of movement extend to a sub-aqueous depth of approximately 40 m. The implications are shown in the profiles of the terraces and barriers. (Qf) age. Note changes in slope, and thickness variations. Example from Unnamed profile near S. Jolla Canyon, near northern California continental shelf.

SLUMP transitions solid where well-defined, dashed where altered, greenish where uncertain. Arrows indicate inferred directions of movement. Zones of movement extend to a sub-aqueous depth of approximately 40 m. The implications are shown in the profiles of the terraces and barriers. (Qf) age. Note changes in slope, and thickness variations. Example from Unnamed profile near S. Jolla Canyon, near northern California continental shelf.

SLUMP transitions solid where well-defined, dashed where altered, greenish where uncertain. Arrows indicate inferred directions of movement. Zones of movement extend to a sub-aqueous depth of approximately 40 m. The implications are shown in the profiles of the terraces and barriers. (Qf) age. Note changes in slope, and thickness variations. Example from Unnamed profile near S. Jolla Canyon, near northern California continental shelf.

SLUMP transitions solid where well-defined, dashed where altered, greenish where uncertain. Arrows indicate inferred directions of movement. Zones of movement extend to a sub-aqueous depth of approximately 40 m. The implications are shown in the profiles of the terraces and barriers. (Qf) age. Note changes in slope, and thickness variations. Example from Unnamed profile near S. Jolla Canyon, near northern California continental shelf.

SLUMP transitions solid where well-defined, dashed where altered, greenish where uncertain. Arrows indicate inferred directions of movement. Zones of movement extend to a sub-aqueous depth of approximately 40 m. The implications are shown in the profiles of the terraces and barriers. (Qf) age. Note changes in slope, and thickness variations. Example from Unnamed profile near S. Jolla Canyon, near northern California continental shelf.

39. GAS (bright spot, subsurface)
40. GAS (bright spot, subsurface)
41. GAS (bright spot, subsurface)
42. DIAPHRAGM RIDGE

GAS area of active, anxious, possibly indicating the presence of gas stored subsurface. Solid where well-defined, dashed where altered, greenish where uncertain. Example from Unnamed profile across San Pedro area near Long Beach and Los Angeles County area, southern California continental margin.

GAS area of active, anxious, possibly indicating the presence of gas stored subsurface. Solid where well-defined, dashed where altered, greenish where uncertain. Example from Unnamed profile across San Pedro area near Long Beach and Los Angeles County area, southern California continental margin.

GAS area of active, anxious, possibly indicating the presence of gas stored subsurface. Solid where well-defined, dashed where altered, greenish where uncertain. Example from Unnamed profile across San Pedro area near Long Beach and Los Angeles County area, southern California continental margin.

DIAPHRAGM RIDGE (solid where well-defined, dashed where altered, greenish where uncertain. Example from Unnamed profile across San Pedro area near Long Beach and Los Angeles County area, southern California continental margin.)

*U.S. Geological Survey
**California Department of Conservation, Division of Mines and Geology
MAP A. Faults shown on the first fault map of California, from Map No. 3 of the State Earthquake Investigation Commission report on the California earthquake of April 18, 1906 (Lowen, and others, 1908). Fault names shown in quotation marks are from test of 1908 report; other fault names were added from current usage.

MAP B. H.O. Wood's (1916) enlarged version of Lowen's (1908) fault map of California, showing faults and faults tentatively considered by Wood to be generators of earthquakes.

EXPLANATION

1. San Andreas fault
2. North Coast fault
3. Mendocino fault
4. South fault system (also known as California fault)
5. San Juan fault system
6. San Diego fault
7. Sonoma fault
8. Santa Cruz fault
9. Monterey fault system
10. Santa Lucia fault
11. San Geronimo fault
12. San Bernadino fault
13. San Diego fault
14. San Francisco fault
15. San Francisco fault
16. San Joaquin fault
17. San Benito fault
18. San Miguel fault
19. San Luis Obispo fault
20. San Luis Obispo fault
21. San Luis Obispo fault
22. San Luis Obispo fault
23. San Luis Obispo fault
24. San Luis Obispo fault
25. San Luis Obispo fault
26. San Luis Obispo fault

Unnumbered, but identified faults by Wood: Kronem (Lake fault), Alum Rock (now known as Alum Rock fault), Santa Cruz fault.
EXPLANATION

1. Burdet Mtn. F
2. Chico monocline F
3. Chino F
4. Coyote Creek F
5. Cristianitos F
6. Cucamonga F
7. Dry Creek fault
8. Fault in Anderson Valley and Navarro R
9. Fault in Capay Valley
10. Fault at Dibble Canyon
11. Fault by Dinkenka Hills
12. Fault in Palm Canyon
13. Fault along San Antonio Creek
14. Fault at San Simeon
15. Fault on W side Panamint Va
16. Fault on W side Saline Va
17. Johnson Va F
18. Kern Gorge F
19. Lake-Fairwater F
20. Gate Point F
21. No Branch San Andreas F
22. Danridge-Santa Susana F
23. Old Woman Springs F
24. Piños Verde F
25. Pipes Canyon F
26. Rinconada F
27. Rogers Creek-Healdsburg F
28. San Fernando F
29. San Francisco F
30. San Gabriel F
31. San Gabriel F
32. Sierra Madre F
33. Tiley F
34. Tulare F
35. Tulare F

LEGEND

ACTIVE FAULT, well located
ACTIVE FAULT, uncertainly located
PROBABLY ACTIVE FAULT
DEAD FAULT, well located
DEAD FAULT, uncertainly located
PROBABLE FAULT, location and character uncertain

MAP C: Faults shown on the Fault Map of California compiled by B. Willis and H.O. Wood and published by the Seismological Society of America in 1922 at a scale of 1:506,880. Faults were not shown by name on the original map, but have been identified on this plate.
MAP E: Fault map of southern California (here slightly generalized) compiled by H.O. Wood. Faults were taken largely from the 1922 Fault Map of California and the 1938 Geologic Map of California. This fault map (with epicenters) was published in the Bulletin of Seismological Society of America, July 1947.
Faults of Lake Tahoe graben (Lindgren, 1887, USGS Folio)
Concord Ridge
Rinconada (part)
Rinconada
Owens Valley (v. incomplete - only part that broke at Lone Pine)
San Gabriel (v. incomplete)
San Gabriel (disappearing under Frazier thrust)
Chesapeake
Amboy Panda (part)
San Dimas
San Gabriel (eastern end)
Sierra Madre
Raymond
Gudamonga
Newport-Inglewood
Rose Canyon

MAP D: Faults shown on the Geologic Map of California published in 1938 at 1:500,000 scale. This reduced version, showing faults only, includes all those faults shown on the larger scale map. Faults were not shown by name on the original map, but have been identified on this plate.