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1. Introduction.

In the course of an investigation of the effect of surface scratches on the mechanical

strength of solids, some general conclusions were reached which appear to have a direct

bearing on the problem of rupture, from an engineering standpoint, and also on the

larger question of the nature of intermolecular cohesion.

The original object of the work, which was carried out at the Koyal Aircraft Estab-

lishment, was the discovery of the effect of surface treatment—such as, for instance,

filing, grinding or polishing—on the strength of metallic machine parts subjected to

alternating or repeated loads. In the case of steel, and some other metals in common

use, the results of fatigue tests indicated that the range of alternating stress which

could be permanently sustained by the material was smaller than the range within

which it was sensibly elastic, after being subjected to a great number of reversals.

Hence it was inferred that the safe range of loading of a part, having a scratched or
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grooved surface of a given type, should be capable of estimation with the help of one

of the two hypotheses of rupture commonly used for solids which are elastic to fracture.

According to these hypotheses rupture may be expected if (a) the maximum tensile

stress, (&) the maximum extension, exceeds a certain critical value. Moreover, as the

behaviour of the materials under consideration, within the safe range of alternating

stress, shows very little departure from Hooke's law, it was thought that the necessary

stress and strain calculations could be performed by means of the mathematical theory

of elasticity.

The stresses and strains due to typical scratches were calculated with the help of

the mathematical work of Prof. C. E. Inglis,* and the soap-film method of stress

estimation developed by Mr. Gr. I. Taylor in collaboration with the present author, f

The general conclusions were that the scratches ordinarily met with could increase

the maximum stresses and strains from two to six times, according to their shape and

the nature of the stresses, and that these maximum stresses and strains were to all

intents and purposes independent of the absolute size of the scratches. Thus, on the

maximum tension hypothesis, the weakening of, say, a shaft 1 inch in diameter, due

to a scratch one ten-thousandth of an inch deep, should be almost exactly the same as

that due to a groove of the same shape one-hundredth of an inch deep.

These conclusions are, of course, in direct conflict with the results of alternating

stress tests. So far as the author is aware, the greatest weakening due to surface

treatment, recorded in published work, is that given by J. B. Kommers,J who found

that polished specimens showed an increased resistance over turned specimens of

45 to 50 per cent. The great majority of published results indicate a diminution in

strength of less than 20 per cent. Moreover, it is certain that reducing the size of the

scratches increases the strength.

To explain these discrepancies, but one alternative seemed open. Either the

ordinary hypotheses of rupture could be at fault to the extent of 200 or 300 per cent.,

or the methods used to compute the stresses in the scratches were defective in a like

degree.

The latter possibility was tested by direct experiment. A specimen of soft iron

wire, about 0* 028-inch diameter and 100 inches lone- which had a remarkablv definite

elastic limit, was selected. This was scratched spirally (i.e., the scratches made an

angle of about 45 degrees with the axis) with carborundum cloth and oil. It was

then normalised to remove initial stresses and subjected to a tensile load. Under

these conditions the effect of the spiral scratches was to impart a twist to the wire,

the twisting couple arising entirely from the stress-system due to the scratches. It

was found that if the load exceeded a certain critical value, a part of the twist, amounting

* " Stresses in a Plate due to the Presence of Cracks and Sharp Corners," * Proe. Inst. Naval Architects,'

March 14, 1913.

f 'Proc. Inst. Meek Eng.' December 14, 1917, pp. 755-809.

% ' Intern. Assoc, for Testing Materials/ 1912, vol. 4a and vol. 4b.
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in some cases to 15 per cent., remained after the removal of the load. It was inferred

that at this critical load the maximum stresses in the scratches reached the elastic

limit of the material. This load was abont one-quarter to one-third of that which

caused the wire to yield as a whole, so that the scratches increased the maximum
stress three or four times. The readings were quite definite even in the case of scratches

produced by No. cloth, which were found by micrographic examination to be but

10~ 4-inch deep. Control experiments with longitudinal and circumferential scratches

gave twists only 2 or 3 per cent, of those found with spiral scratches, and there was no

permanent twist.

This substantial confirmation of the estimated values of the stresses, even in very

fine scratches, shows that the ordinary hypotheses of rupture, as usually interpreted,

are inapplicable to the present phenomena. Apart altogether from the numerical

discrepancy, the observed difference in fatigue strength as between small and large

scratches presents a fundamental difficulty.

2. A Theoretical Criterion of Rupture.

In view of the inadequacy of the ordinary hypotheses, the problem of the rupture

of elastic solids has been attacked from a new standpoint. According to the well-known

" theorem of minimum energy,
5
' the equilibrium state of an elastic solid body, deformed

by specified surface forces, is such that the potential energy of the whole system* is

a minimum. The new criterion of rupture is obtained by adding to this theorem the

statement that the equilibrium position, if equilibrium is possible, must be one in which

rupture of the solid has occurred, if the system can pass from the unbroken to the

broken condition by a process involving a continuous decrease in potential energy.

In order, however, to apply this extended theorem to the problem of finding the

breaking loads of real solids, it is necessary to take account of the increase in potential

energy which occurs in the formation of new surfaces in the interior of such solids.

It is known that, in the formation of a crack in a body composed of molecules which

attract one another, work must be done against the cohesive forces of the molecules

on either side of the crack.f This work appears as potential surface energy, and if

the width of the crack is greater than the very small distance called the
(i
radius of

molecular action/' the energy per unit area is a constant of the material, namely, its

surface tension.

In general, the surfaces of a small newly formed crack cannot be at a distance

apart greater than the radius of molecular action. It follows that the extended

theorem of minimum energy cannot be applied unless the law connecting surface

energy with distance of separation is known.

* Poynting and Thomson, ' Properties of Matter/ ch. xv.

f The potential energy of the applied surface forces is, of course, included in the " potential energy,

of the system.''

Zi A. Jj
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There is, however, an important exception to this statement. If the body is such

that a crack forms part of its surface in the unstrained state, it is not to be expected

that the spreading of the crack, under a load sufficient to cause rupture, will result in

any large change in the shape of its extremities. If, further, the crack is of such a

size that its width is greater than the radius of molecular action at all points except

very near its ends, it may be inferred that the increase of surface energy, due to the

spreading of the crack, will be given with sufficient accuracy by the product of the

increment of surface into the surface tension of the material.

The molecular attractions across such a crack must be small except very near its

ends ; it may therefore be said that the application of the mathematical theory of

elasticity on the basis that the crack is assumed to be a traction-free surface, must

give the stresses correctly at all points of the body, with the exception of those near

the ends of the crack. In a sufficiently large crack the error in the strain energy so

calculated must be negligible. Subject to the validity of the other assumptions involved,

the strength of smaller cracks calculated on this basis must evidently be too low.

The calculation of the potential energy is facilitated by the use of a general theorem

which may be stated thus : In an elastic solid body deformed by specified forces applied

at its surface, the sum of the potential energy of the applied forces and the strain, energy

of the body is diminished or unaltered by the introduction of a crack whose surfaces are

traction-free.

This theorem may be proved* as follows : It may be supposed, for the present purpose,

that the crack is formed by the sudden annihilation of the tractions acting on its surface.

At the instant following this operation, the strains, and therefore the potential energy

under consideration, have their original values ; but, in general, the new state is not

one of equilibrium. If it is not a state of equilibrium, then, by the theorem of minimum
energy, the potential energy is reduced by the attainment of equilibrium ; if it is a state

of equilibrium the energy does not change. Hence the theorem is proved.

Up to this point the theory is quite general, no assumption having been introduced

regarding the isotropy or homogeneity of the substance, or the linearity of its stress-

strain relations. It is necessary, of course, for the strains to be elastic. Further

progress in detail, however, can only be made by introducing Hooke's law.

If a body having linear stress-strain relations be deformed from the unstrained state

to equilibrium by given (constant) surface forces, the potential energy of the latter is

diminished by an amount equal to twice the strain energy.f It follows that the net

reduction in potential energy is equal to the strain energy, and hence the total decrease

in potential energy due to the formation of a crack is equal to the increase in strain

energy less the increase in surface energy. The theorem proved above shows that the

former quantity must be positive.

* The proof is due to Mr. C. Wigley, late of the Royal Aircraft Establishment.

f A. E. H. Love, ' Mathematical Theory of Elasticity,' 2nd ed., p. 170.
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3. Application of the Theory to a Cracked Plate,

The necessary analysis may be performed in the case of a flat homogeneous isotropic

plate of uniform thickness, containing a straight crack which passes normally through

it, the plate being subjected to stresses applied in its plane at its outer edge.

If the plate is thin, its state is one of " plane stress/' and in this case it may, without

additional complexity, be subjected to any uniform stress normal to its surface, in

addition to the edge tractions. If it is not thin, it may still be dealt with provided it is

subjected to normal surface stresses so adjusted as to make the normal displacement

zero. Here the plate is in a state of "plane strain." The equations to the two states

are of the same form,* differing only in the value of the constants ; they will therefore

be taken together.

The strain energy may be found, with sufficient accuracy, in the general case where

the edge-tractions are arbitrary ; it is necessary in the present application, however,

for the resulting stress-system to be symmetrical about the crack, as otherwise it is

not obvious that the latter will remain straight as it spreads. The only stress

distribution which will be considered, therefore, is that in which the principal stresses

in the plane of the plate, at points far from the crack, are respectively parallel and

perpendicular to the crack, and are the same at all such points. This is equivalent

to saying that, in the absence of the crack, the plate would have been subjected to

uniform principal stresses in and perpendicular to its plane. It is also necessary, on

physical grounds, for the stress perpendicular to the crack and in the plane of the plate

to be a tension, otherwise the surfaces of the crack are forced together instead of being

separated, and they cannot remain free from traction.

In calculating the strain energy of the plate use will be made of the solution obtained

by Prof. Inglis for the stresses in a cracked plate, to which reference has already been

made. The notation of Prof. Lstglis's paper will be employed. In that notation

a, /?, are elliptic co-ordinates defined by the family of confocal ellipses ; a — const,

and the orthogonal family of hyperbolae /3 = const. The crack is represented by the

limiting ellipse or focal line a = 0. The axis of x coincides with the major axes, and

the axis of y with the minor axes of the ellipses. The cartesian co-ordinates &, y, are

connected with the elliptic co-ordinates a, ft, by the relation

x -f- iy = c cosh (a + ifi).

Ra«, uaf are the tensile stress and displacement respectively along the normal to

a = const.

Has, %, are the corresponding quantities in the case of the normal to /3 — const.

Sa/3 is the shear stress in the directions of these normals.

c is the half-length of the focal line.

* A. E. H. Love, ' Mathematical Theory of Elasticity,' 2nd ed., p. 205.
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h is the modulus of transformation, \f -
9 ,

— —r-

v c
2
(cosh 2a — cos 2/3)

im is the modulus of rigidity of the material.

E is Young's modulus.

a- is Poisson's ratio.

p = 3 — 4 a- in the case of plane strain, and

3-

1 -j~

~ in the case of plane stress.
or

The state of uniform stress existing at points far from the crack (i.e. where a is

large) will be specified by the three principal tensions P, Q and K. P is normal to the

plate, and in the case of plane stress it is the same everywhere. Q and R are parallel

respectively to the axes of x and y, and R is positive.

The strain energy of the plate is a quadratic function of P, Q and R, and hence, in

accordance with the theorem proved above, the increase of strain energy due to the

crack must be a positive quadratic function of P, Q and R. The general form of this

function may be found by evaluating a sufficient number of particular cases.

The following particular cases are sufficient :—

I.—Q = R (and P = in the case of plane stress).

Boundary of crack given by a = a .

The stresses are

P _ p sinh 2a (cosh 2a — cosh 2a ) ,, v

(cosh 2a — cos 2(3)

p — P sinh 2a (cosh 2a -f cosh 2a — 2 cos 2/3) io^K^"~ K
(cosh 2a -~^S 2W

' (J)

a _ p sin 2/3 (cosh 2a — cosh 2a ) /o\

(cosh 2a — cos 2/3)

while the displacements are given by

T
a = -— {(p — 1) cosh 2a — (p + 1) cos 2/3 + 2 cosh 2a }

h

>. . . (4)

The strain energy of the material within the ellipse a, per unit thickness of plate is

1
Q

•2v Ur.

r2w

h

u
. Xlaa * w/j -\~ 2"

~f~ * ^a|8 • w/j» ^O
j

tl
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On substituting and integrating, it is found that, as a becomes large, the strain

energy tends towards the value

*~{*(p-l)^+(3-l»)coBhSU (6)

Hence W, the increase of strain energy due to the cavity a , is given by

W =2^ (3 - p) cosh 2* (7)

or, on proceeding to the limit, a = 0,

,2T>2

a> W = (I^LP) ^R'
(
8

)
8/x

for a very narrow crack of length 2c.

II.—R = (= P in the case of plane stress) a = 0.

Here the stresses are entirely unaltered by the crack, at every point of the plate

except the two points x = ± c, y = 0, where Raa = — Q. It follows that W = 0.

III.—Q = R = 0, a = 0.

Here, again, the stresses are unaltered, and W = 0.

The only positive quadratic function of P, Q and R which is compatible with these

three particular cases is that given by equation (8) ; this is therefore the general form

of W, and rupture is determined entirely by the stress R, perpendicular to the crack.

A point of some interest, with regard to equation (8), may be noticed in passing.

Since W cannot be negative it follows that, in real substances, where ^ is positive,

3 — p must be positive. Hence a- cannot be negative in real isotropic solids.

The potential energy of the surface of the crack, per unit thickness of the plate is

U = 4cT (9)

where T is the surface tension of the material.

Hence the total diminution of the potential energy of the system, due to the presence

of the crack, is

W - U = (3 ~ £±
7r°2R2 - 4cT (10)

8/x

The condition that the crack may extend is

|(W-U) = 0,

or

(3 - p) ttcK
2 = 16/tT, , . (11)
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so that the breaking stress is

R = 2V
in the case of plane strain, and

jUL±

7T(rG

R V-2ET
7T<tC

(12)

(13)

in the case of plane stress.

Formula (13) has been verified experimentally. In connection with the experiments,

interest attaches not only to the magnitude of R, but also to the value of the maximum
tension in the material, which occurs at the extremities of the crack. This stress may
be estimated if the radius of curvature of the boundary of the crack, at the points in

question, can be found.

Expression (2) gives the maximum tension as

2Rv c

P

(14)

in case I. above, p being the radius of curvature at the corners of the elliptic crack.

Prof. Inglis shows that this expression may also be used, with little error, for cracks

which are elliptic only near their ends. The foregoing expressions for the stresses

are obtained, however, on the assumption that the displacements are everywhere so

small that their squares may be neglected. At the corner of a very sharp crack, it

cannot be assumed, without proof, that the change in p leaves formula (14) substantially

unaffected.

In the case under consideration the displacements at the surface of the crack, due to

a small tension dR at distant points, are given by

ua

h

u'/3

h

c
2dK
E

*\

(cosh 2a — cos 2/3)

(16)

J

Whence, by resolution, the displacements parallel respectively to the major and minor

axes are

ux
= -^p c smn <x cos /3

u
y
= —=- c cosh a sm fi

y (16)

E y

which may be written

u.

u
V

2(31

E

2cER

E

x tanh Or

y coth a
(

r- (n)

j
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Equations (17) show that the effect of the small stress dH on the elliptic cavity is to

deform it into another ellipse. If a and b are the major and minor semi-axes of the

ellipse, when the plate is subjected to a stress R, then, by (17),

da __ 26M ~~E

db _ 2a

d±\> E

*\

y »«»»»"»•»*» l J.OI

J

on making use of the relation h = a tanh a .

The solution of these simultaneous differential equations is

a = aA cosh -tt-+ & Slnh

A

'0

6 — an smn

E

2R

E ,

2E
>

a s.f*,L.a.-S.i. .-, l" On COSH -_-,
} E ° E

• * • • » • • i*wj

j

where a and b are the values of a and & in the unstrained state.

With the help of equations (19) it is possible to find the maximum stress, F, due to

an applied stress, R, taking account of the change in the shape of the cavity. From (2)

whence

dF
dR

2
a

. . . . (20)

TjI O
tvn cosn •"^ n sinh -^r-rfli

E

o cJa sinn -™* 4- 6A cosh'0

2K

E log (cosh -^-
a^ • i /it i

t^ sinh
E

• • * • l *J JL /

and in the case of a narrow crack which is elliptic only near its ends, -^ may, as in (14),

be replaced by a/-.
P

In the general case, where Q is not equal to R, the quantity R — Q must be added

to the value of F given by (21).

Formula (19) and (21) are not, of course, exactly true. The application of integration

to equations (18) and (20) involves the assumption that the strains are so small that

they can be superposed. If the strains are finite, this involves an error in the stresses

depending on the square of the strains. In the case of ordinary solids, it is improbable

that this assumption can alter the calculated stress by as much as 1 per cent.

VOL. CCXXI.—-A. 2 B
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4. Experimental Verification of the Theory.

In order to test formula (13), it was necessary to select an isotropic material which

obeyed Hooke's law somewhat closely at all stresses, and whose surface tension at

ordinary temperatures could be estimated. For these reasons glass was preferred to

the metals in common use. A comparatively hard English glass,* having the following

properties, was employed :•

—

Composition—Si02 ,
69-2 per cent. ; K20, 12-0 per cent. ; Na20, 0-9 per cent.

;

Al/)
3 ,

11 -8 per cent. ; CaO, 4*5 per cent. ; MnO, 0-9 per cent.

Specific gravity—2-40.

Young's modulus—-9 • 01 X 106
lbs. per sq. inch.

Poisson's ratio—0-251.

Tensile strength—-24,900 lbs. per sq. inch.

The three last-named quantities were determined by the usual tension and torsion

tests on round rods or fibres about 0* 04-inch diameter and 3 inches long between the

gauge points. The fibres had enlarged spherical ends which were fixed into holders

with sealing wax. A slight load was applied while the wax was still soft, to ensure

freedom from bending. The possible error of the extension measurements was about

±0-3 per cent., and Hooke's law was obeyed to this order of accuracy. No " elastic

after-working " was observed with this glass, though more accurate measurements

would doubtless have indicated its existence.

The problem of estimating the surface tension of glass, in the solid state, evidently

requires special consideration. Direct determinations appeared to be impracticable,

and ultimately an indirect method was decided on, in which the surface tension was

found at a number of high temperatures and the Value at ordinary temperatures deduced

by extrapolation.

On the accepted theory of matter, intermolecular forces in solids and liquids consist

mainly of two parts, namely, an attraction which increases rapidly as the distance

between the molecules diminishes, balanced by a repulsion (the intrinsic pressure),

which is due to the thermal vibrations of the molecules. It is reasonable to assume

that the attraction, at constant volume, is sensibly independent of the temperature
;

this amounts merely to supposing that the attraction exerted by a molecule does not

depend on its state of motion. On this view, the temperature variation, at constant

volume, of the intermolecular forces is determined entirely by the change in thermal

energy. Hence, it may be inferred, on the accepted theory of surface tension,f that

the surface tension of a material, at constant volume, is equal to a constant diminished

by a quantity proportional to the thermal energy of the substance. In the case of

solids, nearly the same result should hold at constant pressure, as the temperature-

volume change is small.

* Supplied in the form of test-tubes by Messrs. J. J. Griffin, Kingsway, London,

f Poynting and Thomson, ' Properties of Matter,' ch. xv.
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The specific heat of glass is greater at high than at low temperatures, but the

temperature coefficient is not large. Hence its surface tension may be expected to be

nearly a linear function of the temperature, and extrapolation should be fairly reliable.

This was found to be the case with the glass selected for the present experiments.

In the neighbourhood of 1100° C. the surface tension was found by Quincke's drop

method. At lower temperatures this method was not satisfactory, on account of the

large viscosity of the liquid glass ; but between 730° C. and 900° C. the method described

below was found to be practicable. Fibres of glass, about 2 inches long and from

0* 002-inch to 0-01-inch diameter, with enlarged spherical ends, were prepared. These

were supported horizontally in stout wire hooks and suitable weights were hung on

their mid-points. The enlarged ends prevented any sagging except that due to

extension of the fibres. The whole was placed in an electric resistance furnace main-

tained at the desired temperature. Under these conditions viscous stretching of the

fibre occurred until the suspended weight was just balanced by the vertical components

of the tension in the fibre. The latter was entirely due, in the steady state, to the surface

tension of the glass, whose value could therefore be calculated from the observed sag

of the fibre. In the experiments the angle of sag was observed through a window in

the furnace by means of a telescope with a rotating cross wire. If w is the suspended

weight, d the diameter of the fibre, T the surface tension, and 9 the angle at the point

of suspension between the two halves of the fibre, then, evidently,

7T . d . T . sin \Q = w.

For this method of determining the surface tension to be valid, it is evidently necessary

that the angle of sag shall reach a steady value before the development of local

contractions, arising from the instability of liquid cylinders, becomes appreciable.

That this requirement is satisfied is shown by the following experimental results. After

heating for two hours at about 750° C. the angle of sag of a particular fibre was 18° -25.

Two hours later it had increased by less than 0°-l. The temperature was then raised

momentarily to 940° C, and quickly reduced again to 750° C. The angle was then

found to be 20° '2. After two hours further heating at 750° C. the angle had decreased

to 18°* 4, agreeing within permissible limits of error with the former value. That

is to say, substantially the same limiting angle of sag was reached whether the initial

angle was above or below that limit.

Above 900° C. it was found that the viscosity was insufficient to enable an observation

to be made before the fibre commenced to break up into globules. Below 730° C, on

the other hand, observations made on fibres of different diameters were inconsistent,

the apparent surface tension being higher for the larger fibres. The obvious meaning

of this result is that below 730° C. the glass used was not a perfect viscous liquid and

hence the method was inapplicable. The transition from the viscous liquid state was

quite gradual. The maximum tension (apart from surface tension) which could be

permanently sustained, was zero at 730° C, 1-3 lbs. per sq. inch at 657° C, and 24 lbs.

2 b 2
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per sq. incli at 540° C. At lower temperatures the rates of increase, both of this " solid

stress " and the viscosity, were enormously greater. At 540° C. a fibre took about

70 hours to reach the steady state.

Table I. below gives the values of the surface tension obtained from these experiments.

That for the temperature 1110° C. is the mean of five determinations by the drop

method. The remaining figures were obtained from the sag of fibres.

JLA-BLtMli X. KJUllCtUC XCIIDIUJJ. Ui VXLCtSD.

Temperature. Surface Tension.

° C. lb. per inch.

1110 0*00230

905 0-00239

896 0-00250

852 „ 0-00249

833 0-00254

820 0-00249

801 0*00257

760 0-00255

745 0-00251

15 0-0031*

So far as they go, these figures confirm the deduction that the surface tension of glass

is approximately a linear function of temperature. Moreover, as the actual variation

is not great, the error involved in assuming such a law and extrapolating to 15° C. is

doubtless fairly small. The value so obtained, O'OOSl lb. per inch, will be used in

the present application.

Rigorously, expressions (13) and (21) above are true only for small cracks in large

flat plates. In view, however, of the difficulties attendant on annealing and loading

large flat glass plates, it was decided to perform the breaking tests on thin round tubes

and spherical bulbs. These were cracked and then annealed and broken by internal

pressure. The calculation cannot be exact for such bodies, but the error may obviously

be reduced by increasing the ratio of the diameter of the bulb or tube to the length of

the crack. It will be seen from the results of the tests that the variation of this ratio

from two to ten caused little, if any, change in the bursting strength, and hence it may
be inferred that the error in question is negligible for the present purpose.

The cracks were formed either with a glass-cutter's diamond, or by scratching with

a hard steel edge and tapping gently. The subsequent annealing was performed by

heating to 450° C. in a resistance furnace, maintaining that temperature for about

one hour, and then allowing the whole to cool slowly. The question of the best annealing

temperature required careful consideration, as it was evidently necessary to relieve the

* By extrapolation.
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initial stresses due to cracking as much, as possible, while at the same time keeping the

temperature so low that appreciable deformation of the crack did not occur. It was

found that the bursting strength increased with the annealing temperature up to about

400° C, while between 400° C. and 500° 0. very little further change was perceptible.

From this it was inferred that relief of the initial stresses was sufficient for the purpose

in view at a temperature of 450° C.

The principal stresses at rupture, Q and R, were calculated from the observed

bursting pressure by means of the usual expressions for the stresses in thin hollow

spheres and circular cylinders, the thickness of the glass near the crack being measured

after bursting. In the case of the tubes the cracks were parallel to the generators,

and provision was made for varying Q by the application of end loads.

In dealing with the longer cracks, leakage was prevented by covering the crack on

the inside with celluloid jelly, the tube being burst before the jelly hardened. In the

case of the smaller cracks leakage was imperceptible and this precaution was unnecessary.

The time of loading to rupture varied from 30 seconds to five minutes. No evidence

was observed of any variation of bursting pressure with time of loading.

The results of the bursting tests are set down in Tables II. and III. below. 2c is

the length of the crack, Q and R are the calculated principal stresses respectively

Table II.—Bursting Strength of Cracked Spherical Bulbs.

2c D Q R BJc.

inch.

0*15
0-27

0*54
0*89

inch.

1-49

1-53
1-60

2-00

lbs. per sq. inch.

864

623

482

366

lbs. per sq. inch.

864

623

482

366

237

228

251

244

Table III.—Bursting Strength of Cracked Circular Tubes.

2c D Q R RJc

inch. inch. lbs. per sq. inch. lbs, per sq. inch.

0*25 0*59 -621 678 240
0-32 0*71 -176 590 232
0-38 0*74 - 31 526 229
0-28 0*61 55 655 245
0-26 0*62 202 674 243
0*30 0*61 308 616 238

parallel and perpendicular to the crack, and D is the diameter of the bulb or tube.

The thickness of the bulbs was about 0-01 inch and the tubes 0*02 inch.
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The average value of R \/c is 239, and the maximum 251.

According to the theory, fracture should not depend on Q, and R \/c should have,

at fracture, the constant value

"2ET

TTor
</

In the case of the glass used for these experiments, E = 9*01 X 106 lbs. per sq. inch,

T = 0-0031 lbs. per inch, and a- = 0-251, so that the above quantity is equal to 266.

These conclusions are sufficiently well borne out by the experimental results, save

that the maximum recorded value of R \/c is 6 percent., and the average 10 percent.,

below the theoretical value. It must be regarded as improbable that the error in the

estimated surface tension is large enough to account for this difference, as this viewT

would render necessary a somewhat unlikely deviation from the linear law.

A more probable explanation is to be obtained from an estimate of the maximum
stress in the cracks. An upper limit to the magnitude of the radius of curvature at

the ends of the cracks was obtained by inspection of the interference colours shown

there. Near the ends a faint brownish tint was observed, and this gradually died out,

as the end was approached, until finally nothing at all was visible. It was inferred

that the width of the cracks at the ends was not greater than one-quarter of the shortest

wave length of visible light, or about 4 X 10~ 6 inch. Hence p could not be greater

than 2 X 10~6 inch.

Taking as an example the last bulb in Table II. and substituting in formula (21), it

is found that

^o V
p

2R
E
= 8-13 X 10

whence the maximum stress P > 344,000 lbs. per sq. inch. The value given by the

first order expression

F - 2R a/ c

v
P

is 350,000 lbs. per sq. inch.

A possible explanation, of the discrepancy between theory and experiment is now

evident. In the tension tests, the verification of Hooke's law could only be carried

to the breaking stress, 24,900 lbs. per sq. inch. There is no evidence whatever that

the law is still applicable at stresses more than ten times as great. It is much more

probable that there is a marked reduction in modulus at such stresses. But a decrease

in modulus at any point of a body deformed by given surface tractions involves an

increase in strain energy, and therefore in the foregoing experiments a decrease in

strength. This is in agreement with the observations.
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5. Deductions from the Foregoing Results.

The estimate of maximum stress obtained above appears to lead to a peremptory-

disproof of the hypothesis that the maximum tension in this glass, at rupture, is always

equal to the breaking stress in ordinary tensile tests. If Hooke's law was obeyed to

rupture, and the squares of the strains were negligible, the maximum tension in the

above cracked tube could not have been less than 344,000 lbs. per sq. inch ; but, in

the tensile tests, Hooke's law was obeyed up to the breaking stress, the squares of

the strains were negligible, and the maximum stress was only 24,900 lbs. per sq. inch.

Hence the stresses could not have been the same in the two cases. Moreover,

the order of the results obtained suggests (though this is not rigorously proved,

as the assumptions have not been checked at stresses above 24,900 lbs. per sq.

inch) that the actual strength may be more than ten times that given by the

hypothesis.

Similar conclusions may be drawn regarding the " maximum extension," " maximum
stress-difference " and " maximum shear strain " hypotheses which have been proposed

from time to time for estimating the strength of brittle solids.

These conclusions suggest inquiries of the greatest interest. If the strength of this

glass, as ordinarily interpreted, is not constant, on what does it depend ? What is

the greatest possible strength, and can this strength be made available for technical

purposes by appropriate treatment of the material ? Further, is the strength of other

materials governed by similar considerations ?

Some indication of the probable maximum strength of this glass may be obtained

from the bursting tests already described. There is no reason for supposing that, in those

tests, the radii of curvature at the corners of the cracks were as great as 2X10~" 6 inch.

It is much more likely that they were of the same order as the molecular dimensions.

Considering, as before, the last bulb in Table II., and putting p = 2X10~ 8 inch

in formula (21), it is found that the maximum stress, F, is about 3X106 lbs. per

sq. inch. Elastic theory cannot, of course, be expected to apply with much accuracy

to cases where the dimensions are molecular, on account of the replacement of

summation by integration, and the probable diminution of modulus at very high

stresses must involve a further error. Taking these circumstances into consideration,

however, it may still be said that the probable maximum strength of the glass used

in the foregoing experiments is of the order 106 lbs. per sq. inch.

It is of interest to enquire at this stage whether there is any reason for ascribing

similar maximum strengths to other materials. On the molecular theory of matter

the tensile strength of an isotropic solid or liquid is of the same order as, though less

than, its " intrinsic pressure," and may therefore be estimated either from a knowledge

of the total heat required to vaporise the substance or by means of Van der Waal's

equation.* It may be noted that these methods of estimating the stress indicate that

* Poynting and Thomson, ' Properties ' of Matter/ ch. xv.
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it should be, approximately at least, a constant of the material. Traube* gives the

following as the intrinsic pressures of a number of metals, at ordinary temperatures :

—

Table IV.—Intrinsic Pressures of Metals (Traube).

Metal.

Nickel

Iron . .

Copper .

Silver

Antimony
Zinc . .

Tin . .

Lead . .

Intrinsic Pressure.

lbs. per sq. inch.

4*71 x 106

4-70 X 106

3'42 X 106

2-34 X 106

1*74 X 106

1-58 X 106

1-06 X 106

0-75 X 10°

These are of the same order as the direct estimate obtained above for glass, but they

are from 20 to 100 times the strengths found in ordinary tensile and other mechanical

tests.

In the case of liquids, the discrepancy between intrinsic pressure and observed tensile

strength is much greater. According to Van der Waal's equation, water has an

intrinsic pressure of about 160,000 lbs. per sq. inch, whereas its tensile strength is found

to be about 70 lbs. per sq. inch. It has been suggested that this divergence may be

due to impurities, such as dissolved air, but Dixojst and JoLYf have shown that dissolved

air has no measurable effect on the tensile strength of water.

Thus the matters under discussion appear to be of general incidence, in that the

strengths usually observed are but a small fraction of the strengths indicated by the

molecular theory.

Some further discrepancies between theory and experiment may now be noticed.

In the theory it is assumed that rupture occurs in a tensile test at the stress corresponding

with the maximum resultant pull which can be exerted between the molecules of the

material. On this basis the applied stress must have a maximum value at rupture,

and hence, if intermolecular force is a continuous function of molecular spacing, the

stress-strain diagram must have zero slope at that point. This, of course, is never

observed in tensile tests of brittle materials ; in no case has any evidence been obtained

of the existence of such a maximum anywhere near the breaking stress.

Again, the observed differences in strength as between static and alternating stress

tests are at first sight inexplicable from the standpoint of the molecular theory, if the

* ' Zeitschr. fur Anorganische Chemie,' 1903, vol. xxxiv., p. 413.

f
' Phil. Trans.,' B, 1895, p. 568.
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breaking load' is regarded as the sum of the intermolecular attractions. According to

the theory, large changes in the latter can only occur as a result of large changes in

the thermal energy of the substance, such as would be immediately evident in alternating

stress tests, if they took place.

Lastly, as indicated above, the strain energy at rupture of an elastic solid or liquid

should on the molecular theory be of the same order as its heat of vaporisation. Hence

rupture should be accompanied by phenomena, such as a large rise of temperature,

indicative of the dissipation of an amount of energy of this order. It is well known

that tensile tests of brittle materials show no such phenomena.

If, as is usually supposed, the materials concerned are substantially isotropic, there

is but one hypothesis which is capable of reconciling all these apparently contradictory

results. The theoretical deduction—that rupture of an isotropic elastic material always

occurs at a certain maximum tension—is doubtless correct ; but in ordinary tensile

and other tests designed to secure uniform stress, the stress is actually far from uniform

so that the average stress at rupture is much below the true strength of the material.

Now it may be shown, with the help of elastic theory, that the stress must be

substantially uniform, in such tests, unless the material of the test-pieces is heterogeneous

or discontinuous. It is known that all substances are in fact discontinuous, in that

they are composed of molecules of finite size, and it may be asked whether this type

of discontinuity is sufficient to account for the observed phenomena.

With the help of formula (13) above, this question may be answered in the negative.

Formula (13) shows that a thin plate of glass, having in it the weakest possible crack of

length 2c inch, will break at a tension, normal to the crack, of not less than 266/\A lbs.

per sq. inch. This result, however, is subject to certain errors, and experiment

shows that the 'true breaking stress is about 240/Vc lbs. per sq. inch. But such a

crack is the most extreme type, either of discontinuity or heterogeneity, which can

exist in the material. Hence it is impossible to account for the observed strength,

24,900 lbs. per sq. inch, of the simple tension test specimens, unless they contain

/ 04.A \2

discontinuities at least 2 X 777-7^: inch, or say, 2 X 10~ 4 inch wide. This is of
\24,900/

the order 10~4 times the molecular spacing.

The general conclusion may be drawn that the weakness of isotropic solids, as

ordinarily met with, is due to the presence of discontinuities, or flaws, as they may be

more correctly called, whose ruling dimensions are large compared with molecular

distances. The effective strength of technical materials might be increased 10 or 20

times at least if these flaws could be eliminated.

It is easy to see why the presence of such small flaws can leave the strength of cracked

plates, such as those of the foregoing experiments, practically unaffected. The most

extreme case of weakening is that where there is a flaw very near the end of the crack

and collinear with it. Here the result is merely to increase the effective length of the

.crack by less than 10~ 8 inch. This involves a weakening of less than 0-1 per cent.

vol. coxxi.

—

a. 2 c
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6. The Strength of Thin Fibres.

Consideration of the consequences of the foregoing general deduction indicated that

very small solids of given form, e.g., wires or fibres, might be expected to be stronger

than large ones, as there must in such cases be some additional restriction on the size

of the flaws. In the limit, in fact, a fibre consisting of a single line of molecules must

possess the theoretical molecular tensile strength. In this connection it is, of course,

well known that fine wires are stronger than thick ones, but the present view suggests

that in sufficiently fine wires the effect should be enormously greater than is observed

in ordinary cases.

This conclusion has been verified experimentally for the glass used in the previous

tests, strengths of the same order as the theoretical tenacity having been observed.

Incidentally, information of interest has been obtained, somewhat unexpectedly,

concerning the genesis of the flaws, and it has been found to be possible to prepare

quite thick fibres in an unstable condition in which they have the theoretical strength.

Fibres of glass, about 2 inches long and of various diameters, were prepared. One

end of a fibre was attached to a stout wire hanging on one arm of a balance, and the

other end to a fixed point, the medium of attachment being sealing wax. A slight

tension was applied while the wax was still soft, in order to eliminate bending of the

fibre at the points of attachment. The other arm of the balance carried a beaker into

which water was introduced from a pipette or burette. The weight of water necessary

to break the fibre was observed, and the diameter of the latter at the fracture was

found by means of a high-power measuring microscope. Hence the tensile strength

was obtained.

At first the results were extremely irregular, though the general tendency of the

strength to increase with diminishing diameter was clear. It was found that the

irregularities were due to the dependence of the strength on the following factors :

—

(1) The maximum temperature of the glass.—To secure the best results it was found

necessary to heat the glass bead to about 1400° C. to 1500° C. before drawing the fibre.

(2) The temperature during drawing.—-If the glass became too cool before drawing

was complete, a weak fibre was obtained. This temperature could not be very closely

defined, but it is perhaps the same as the limiting temperature of the viscous liquid

phase, namely, 730° C. This effect made the drawing of very fine fibres a matter of

some difficulty, as the cooling was so rapid.

(3) The presence of impurities and foreign bodies.

(4) The age of the fibre.—For a few seconds after preparation, the strength of a

properly treated fibre, whatever its diameter, was found to be extremely high. Tensile

strengths ranging from 220,000 to 900,000 lbs. per sq. inch were observed in fibres up

fco about 0-02 inch diameter. These strengths were estimated by measuring the radii

to which it was necessary to bend the fibres in order to break them. They are therefore

probably somewhat higher than the actual tenacities* The glass appeared to be
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almost perfectly elastic up to these high, stresses. The strength diminished, however,

as time went on, until after the lapse of a few hours it reached a steady value whose

magnitude depended on the diameter of the fibre.

Similar phenomena have been observed with other kinds of glass, and also with fused

smca.

The relation between diameter and strength in the steady state was investigated in the

following manner. Fibres of diameters ranging from 0*13 X 10~ 3 inchto4*2 X 10~ 3 inch,

and 6 inches long, were prepared by heating the glass to about 1400° C. to 1500° C. in

an oxygen and coal-gas flame and drawing the fibre by hand as quickly as possible.

The fibres were then put aside for about 40 hours, so that they might reach the

steady state. The test specimens were prepared by breaking these fibres in tension

several times until pieces about • 5-inch long remained ; these were then tested by

the balance method already described. The object of this procedure was the

elimination of weak places due to minute foreign bodies, local impurities and other

causes.

Table V. below gives the results of these tests. Diameters are in thousandths of

an inch, and breaking stresses in lbs. per sq. inch.

Table V.—Strength of Glass Fibres.

1

Diameter.

0*001 inch.

Breaking Stress. Diameter. Breaking Stress.

lbs. per sq. inch. 0-001 inch. lbs. per sq. inch.

4:0-00 24,900* 0-95 117,000
4-20 42,300 0-75 134,000
2-78 50,800 0-70 164,000
2-25 64,100 0-60 185,000
2-00 79,600 0-56 154,000
1-85 88,500 0-50 195,000
1*75 82,600 0-38 232,000
1*40 85,200 0-26 332,000
1-32 99,500 0-165 498,000
1-15

1

88,700 0-130 491,000

It will be seen that the results are still somewhat irregular. No doubt more precise

treatment of the fibres would lead to some improvement in this respect,, but such

refinement is scarcely necessary at the present stage.

The limiting tensile strength of a fibre of the smallest possible (molecular) diameter

may be obtained approximately from the figures in Table V. by plotting reciprocals

of the tensile strength and extrapolating to zero diameter. This maximum strength

is found to be about 1-6 X 106 lbs. per sq. inch, which agrees sufficiently well with

the rough estimate previously obtained from the cracked plate experiments.

* From the tensile tests previously described.

2 c 2
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In 1858, Karmarsch* found that the tensile strength of metal wires could be repre-

sented within a few per cent, by an expression of the type

F = A+? (22)
a

where d is the diameter and A and B are constants. In this connection it is of interest

to notice that the figures in Table V. are given within the limits of experimental error

by the formula

P-M^X)*^ (*)

where F is in lbs. per sq. inch and d is in thousandths of an inch. Within the range

of diameters available to Karmarsgh, this expression differs little from

F = 22,400+2^, (24)
a

which is of the form given by Karmarsch. Moreover, the values of B found by him

for the weaker metals, e.g., silver and gold, in the annealed state, are of the same order

as that given by formula (24) for glass.

To a certain extent this correspondence suggests that the mechanism of rupture, as

distinct from plastic flow, in metals, is essentially similar to that in brittle amorphous

solids such as glass.

The remarkable properties of the unstable strong state referred to on p. 180 above

are exhibited most readily in the case of clear fused silica. If a portion of a rod about

5 mm. diameter be made as hot as possible in an oxyhydrogen flame, and then drawn

down to, say, 1 mm. or less and allowed to cool, the drawn-down portion may be bent

to a radius of 4 or 5 mm. without breaking, and if then released will spring back almost

exactly to its initial form. If instead of being released it is held in the bent form it

will break spontaneously after a time which usually varies from a few seconds to a

few minutes, according to the degree of flexure. To secure the best results the drawing

should be performed somewhat slowly.

When fracture occurs it is accompanied by phenomena altogether different from those

associated with the fracture of the normal substance. The report is much louder and

deeper than the sharp crack which accompanies the rupture of an ordinary silica or

glass rod, and the specimen is invariably shattered into a number of pieces, parts being

frequently reduced to powder. This shattering is not confined to the highly stressed

drawn-out fibre ; it usually occurs also in the unchanged parts of the original thick

rod and sometimes in the free ends, which are not subjected to the bending moment.

The experiment is most striking, for it appears at first sight that the 5 mm. rod has

been broken by a couple applied through the fibre, which may be only 0-5 mm. in

* ' Mittheilungen des gew. Ver. fur Hannover,' 1858, pp. 138-155.
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diameter. As a matter of fact, however, the shattering is probably merely one of the

means of dissipating the strain energy of the strong fibre, which at fracture is perhaps

10,000 times that of silica in the ordinary weak state. An elastic wave is doubtless

propagated from the original fracture, and the stresses due to this wave shatter the

rod.

Confirmation of this view is obtainable if. the fibre is broken by twisting instead of

by bending. The thick part of the rod is in this case found to contain a number of

spiral cracks, at an angle of about 45° to the axis, showing that the material has broken

in tension, but the cracks run in both right- and left-handed spirals, so that the surface

of the rod is divided up into little squares. This shows that the cracking must be due

to an alternating stress, such as would result from the propagation of a torsional wave

along the rod.

Another phenomenon which has been observed in these fibres is that fracture at any

point appears to cause a sudden large reduction in the strength of the remaining pieces.

Thus, in one case a glass fibre was found to break in bending at an estimated stress

of 220,000 lbs. per sq. inch. One of the pieces, on being tested immediately afterwards,

broke at about 67,000 lbs. per sq. inch.

7. Molecular Theory of Strength Phenomena.

From the engineering standpoint the chief interest of the foregoing work centres

round the suggestion that enormous improvement is possible in the properties of

structural materials. Of secondary, but still considerable, importance is the demon-

stration that the methods of strength estimation in common use may lead in some cases

to serious error.

Questions relating to methods of securing the indicated increase in tenacity, or of

eliminating the uncertainty in strength calculations, can scarcely be answered without

some more or less definite knowledge of the way in which the properties of molecules

enter into the phenomena under consideration. In this connection it is of interest to

enquire whether any indication can be obtained of the nature of the properties whick

are requisite for an explanation of the observed facts.

For this purpose it is convenient to start with molecules of the classical type, whose

properties may be defined as (a) a central attraction between each pair of molecules

which decreases rapidly as their central distance increases, and which depends only on

that distance and the nature of the molecules
; (6) translational and possibly rotational

vibrations whose energy is the thermal energy of the substance. In the unstrained

state, the kinetic reactions due to (6) balance the central attractions (a).

In a body composed of such molecules, the flaws which have been shown to exist

in real substances might consist of actual cracks. But experiment shows that under

certain conditions the strength of glass diminishes with lapse of time. On the

present hypothesis this would require the potential energy of the system to increase
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spontaneously by the amount of the surface energy of the cracks. This view must

therefore be regarded as untenable.

Again, the observed weakening might conceivably occur if at any instant the vibrations

of a large number (at least 108
) of near molecules synchronised and were in phase,

provided the energy of these molecules was approximately that corresponding with

the temperature of ebullition of the substance. Except in the case of a material very

near its boiling point, the probability of such an occurrence must be so small as to be

quite negligible. Hence this hypothesis also must be discarded.

The foregoing discussion seems to suggest that the assumed type of molecule is too

simple to permit of the construction of an adequate theory. An increase in generality

may be obtained by supposing that the attraction between a pair of molecules depends

not only on their distance apart, but also on their relative orientation. The properties

of crystals seem definitely to require the molecules of anisotropic materials to be of

this type, but those of isotropic substances have usually been assumed to be of the

simpler kind. In view of the author, however, molecular attraction must be a function

of orientation even in substances, such as glass, metals and water, which are usually

referred to as isotropic."

Consider a solid made up of a number of such molecules, initially oriented at random.

Doubtless the mechanical properties of the substance, while it is in this amorphous

condition, will differ little from those of a substance composed of molecules of the

simpler type, having an attraction of appropriate strength. If this is so, the tensile

strength of the material must be that corresponding with its average intrinsic pressure.

In general, however, this initial condition cannot be one of minimum potential

energy.

It is clear that under suitable conditions the tendency to attain stable equilibrium

can cause the molecules to rotate and set themselves in chains or sheets, with their

maxima of attraction in line. The formation of sheets will commence at a great number

of places throughout the solid, i.e., wherever the initial random arrangement is sufficiently

favourable. Evidently it is possible for the number of such " sufficiently favourable
"

arrangements to be enormously less than the total number of molecules, so that the

ultimate result will be the formation of a number of units or groups, each containing

a large number of molecules oriented according to some definite law. The relative

arrangement of the units will, of course, be haphazard.

Now, in each unit there will, in general, be a direction which is, approximately at

least, that of the minimum attractions of the majority of the molecules in the unit.

Hence if the ratio of the maximum to the minimum attractions is sufficiently great,

each unit can constitute a " flaw," and there appears to be no reason why the units

should not be as large as the flaws have been shown to be in the case of glass. Thus,

in order to explain the spontaneous weakening of glass, it is only necessary to suppose

that the thermal agitation at about 1400° C. is sufficient to bring about the initial

random formation.
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It will be remembered that in the case of the freshly drawn fibres the reduction in

tenacity required several -hours for completion, so that the time taken was large

compared with the time of cooling. Expressed in terms of molecular motion, this

means that the molecules resist rotation very much more than they resist translation.

This is in keeping with the conclusions of Debye,* who found that, on the basis of the

quantum theory, the phenomena associated with the specific heat of solids could be

explained only if the thermal vibrations of the molecules were regarded as practically

irrotational. The same thing is shown more roughly, without introducing the quantum

theory, by the law of Dulong and Petit, which requires that each molecule shall

have only three degrees of freedom.

The theory here put forward makes the spontaneous weakening a consequence of

the attainment of a molecular configuration of stable equilibrium. ; it therefore suggests

that the weakening should be accompanied, in general, by a change in the dimensions

of the solid. This has been verified by direct observation with a high-power microscope
;

in the course of half an hour a spontaneously weakening glass fibre increased in length

by about 0*1 per cent., while the length of a silica fibre decreased by about 0*03 per

cent.

On account of the random arrangement of the molecular groups, this spontaneous

change in unstrained volume must set up internal stresses, which may be sufficiently

large to start cracks along the directions of least strength. In this connection it may
be mentioned that irregularly shaped pieces of glass, of which some parts had been

put into the strong unstable state by heating, have sometimes been observed to break

spontaneously about an hour after cooling was practically complete.

It was remarked on p. 184 that cracks could not form spontaneously in a substance

composed of molecules having spherical fields of force, as the process would involve

an increase in potential energy. This is no longer true when the attraction is a function

of orientation, as the surface energy of the cracks may be more than counterbalanced

by the decrease in potential energy accompanying the molecular rearrangement.

For this reason, it is impossible to deduce the ratio of the maximum to the minimum
molecular attractions from the ratio of the maximum and minimum strengths of the

material, as it is possible that the spontaneous weakening is always accompanied by

the formation of minute cracks, of the same size as the molecular groups.

It is probable that, in many cases, the most stable orientation of the molecules at

a free surface is that in which their maxima of attraction lie along the surface. Such

an orientation would in turn lead to a similar tendency on the part of the next layer

of molecules, and so on, the tendency diminishing with increasing distance from the

surface. There would therefore be a surface layer having the special property that in it

the " flaws " ran parallel to the surface.

Hence this layer would be of exceptional strength in the direction of the surface.

This suggests a reason for the experimental fact that the breaking load of wires and

* ' Ann. der Physik,' 39 (1912), p. 789,
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fibres consists mainly of two parts, one proportional to the area, and the other to the

perimeter of the cross-section. The process of drawings too, might predispose the

molecules to take up positions with their maxima of attraction parallel to the surface.

If a perfectly clean glass plate be covered with gelatine and set aside, the gelatine

gradually contracts, and as it does so it tears from the glass surface thin flakes up to

about 0* 06-inch diameter and shaped like oyster shells.* This tendency to flake at

the surface is also observed when glass is broken by bending. This was particularly

well shown in the specially prepared fibres used for the experiments described in the

present paper. In almost all cases of flexural fracture the crack curled round on

approaching the compression side, till it was nearly parallel to the surface. On two

occasions the fracture divided before changing direction, the two branches going

opposite ways along the fibre and a flake of length several times the diameter of the

fibre was detached.

Surface flaking is also observed when some kinds of steel are subjected to repeated

stress. Here the flakes are usually very small.

All these facts are evidently in complete agreement with the " surface layer
??
theory

and, indeed, it is difficult to account for them on any other basis.

8. Extended Application of the Molecular Orientation Theory.

On the basis of the present theory, the physical properties of materials must be

intimately related to the geometrical properties of the molecular sheet-formation. In

order that a substance may exhibit the characteristic properties of crystals, it is clearly

necessary for the sheets of molecules to be plane. In this case the crystals are, of

course, the molecule groups or " units " referred to above. In " amorphous " materials,

on the other hand, the sheets are probably curved.f

In materials of the former type, there must exist planes on which, if they are subjected

to a sufficiently large shearing stress, the portions on either side of the planes can undergo

a mutual sliding through a distance equal to any integral multiple of the molecular

spacing, without fundamentally affecting the structure of the crystal. It is well known

that the phenomenon of yield in crystals, and especially in metals, is of this nature.

The planes in question are, of course, the well-known " gliding planes/' and it is further

possible that they may be identified also with the surfaces of least attraction. The

stress at which gliding occurs in a single crystal must be determined in the following

manner. The molecules of a crystal are normally in a configuration of stable equilibrium,

and if two parts of the crystal slide on a gliding plane through one molecular space the

resulting configuration is also stable. Between these two positions there must, in

general, be one of higher potential energy, in which the equilibrium is unstable, and the

shearing stress is determined by the condition that the rate at which work is done, in

* Lord Rayleigh, ' Engineering,' 1917, vol. 103, p. Ill, and H. E. Head, c

Engineering/ 1917, vol. 103,

p. 138.

f See Quincke, ' Ann. der Physik/ (4), 46, 1915, p. 1025.
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sliding from the stable to the unstable state, must be equal to the greatest rate of

increase in potential energy which occurs during the passage between the two states.

This rate will depend on the shape of the molecular fields ofiorce, and may in particular

cases be zero. Liquid crystals are doubtless of this type. The average shear stress,

during yield, of a random aggregation of a large number of crystals, is doubtless greater

than that of a single crystal, as the angle between the gliding planes and the maximum
shear stress must vary from crystal to crystal and can be zero in only a few of them.

As the mutually gliding portions of a crystal pass from the stable to the unstable

state, the molecular cohesion between them (normal to the gliding plane) must, in

general, become less. In particular instances it may diminish to zero before the

position of unstable equilibrium is reached. In these cases, shearing fracture along

the gliding planes will occur, unless the material is subjected to a sufficiently high

" hydrostatic " pressure, in addition to the shearing stress. Thus, a crystalline

substance may be either ductile or brittle, according to nature of the applied stress

,

or it may be ductile at some temperatures and brittle at others, under the same kind

of stress as has been actually observed by Bengough and Hanson in the case of tensile

tests of copper. This rupture in shear explains the characteristic fracture of short

columns of brittle crystalline material under axial compression. The theory indicates

that such fracture can always be prevented and yield set up by applying sufficient

lateral pressure in addition to the longitudinal load ; this is in agreement with experi-

ments on rocks such as marble and sandstone.* Conversely, a ductile substance might

be made brittle if it were possible to apply to it a sufficiently large hydrostatic tension.

In the case of an alloy of, say, two metals A and B, suppose, as an example, that the

sequence of molecules on either side of a gliding plane is

. xx • Xj . Xj « XjL Xj • Xj

B.B.A.B.B.A.
Let sliding occur (through one molecular space) to an adjoining position of stable

equilibrium, or, say, to the configuration

• xx • Xj • Xj . J\. • Xj • Xj • *n

. B . B . A B . B A—

>

Evidently, the structure in the neighbourhood of the gliding plane is in this case no

longer the same as in the original crystal formation. It is therefore likely that the

new state is one of higher potential energy, whence it is reasonable to suppose that

the maximum rate of increase in potential, in sliding, is greater than it would have

been had the potential of the two states been the same. Thus an alloy may be expected

to have a higher yield-point than its most ductile constituent. This is in accordance

with experience. For example, it is known that quenching from a high temperature

* T. V. Kabman, * Zeitsekc. Ver. Deutsch. Ing./ 55, 1911.
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hardens tool steel by preventing the separation of " ferrite," or iron containing no

carbon.

In a single crystal the molecules are presumably in an equilibrium configuration of

maximum stability. In this event, the equilibrium of molecules at or .near inter-

crystalline boundaries, in a body composed of a large number of crystals, must, in

general, be less stable than that of the molecules in the interior of the crystals. In

fact, where the orientation of the component crystals is haphazard, the stability of

the boundary molecules may be expected to range from the maximum of normal

crystallisation down to zero, i.e., neutral equilibrium. If such a body be subjected

to a shear stress, some of the molecules in or near neutral equilibrium must, in general,

become unstable, and these will tend to rotate to new positions of equilibrium. This

rotation, however, will be strongly resisted, as has been seen, by forces doubtless of

a viscous nature, and its amount will accordingly depend on the time during which

the stress is applied. If, therefore, the strain is observed it will be found to increase

slowly as time goes on, but at a constantly decreasing rate, as the molecules concerned

approach equilibrium. If now the load is removed, these molecules must rotate in

order to regain their original positions of equilibrium, and this process in turn will be

.retarded by viscous forces. Hence a small part of the observed strain will remain

after the removal of the load, and this will gradually disappear as time goes on. These

properties, known as " elastic after-working," are, of course, well known to belong

to crystalline materials. Moreover, the theory shows that they should not be possessed

by single crystals, and this has been demonstrated experimentally.*

There is a special type of gliding or yield which may occur at stresses below the

normal yield point. Consider a pair of adjacent crystals, separated by a plane boundary.

If these crystals are thought of as sliding relatively to each other, it will be seen that

only in a finite number of the positions so taken up can the two be in stable equilibrium.

Between each pair of such positions there must in general be one of unstable equilibrium.

Suppose that, while near such an unstable position, the two crystals are embedded in

a number of others. Under these conditions the boundary molecules of the two crystals

will be pulled over in the direction of one or other of the two adjoining stable positions,

and they will strain the solid in the process. If now the body is subjected to a shearing

stress tending to cause relative displacement of the two crystals towards the other

stable position, then at a certain value of this stress the molecules on either side of the

boundary will be wrenched away, will pass through the position of instability, and will

then take up a new position bearing the same relation to the second stable position

as their original state did to the first. This new condition will, of course, persist after

the removal of the load, as the original state cannot be regained without passing through

unstable equilibrium, i.e., a condition of maximum potential energy. To cause the

crystals to pass through this condition it would be necessary to apply a load of opposite

sign, and in this way the process might be repeated indefinitely. In a body composed

* H. v. Wartenberg, 'Deutsch. Phys. GeselL, Verh./ 20, pp. 113-122, August 30, 1918.
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of a large number of crystals there must be many arrangements of this type, in which

adjacent crystals can execute inelastic oscillations about positions of unstable equilibrium,

under alternating shear stresses below the ordinary yield stress. The consequent

observed phenomena would correspond exactly with those known to be manifested

in metals, under the name " elastic hysteresis."*

Experimentally, elastic hysteresis is distinguished from elastic after-working by the

circumstance that it is completed very much more quickly. This is just what would

be expected theoretically, on the view that molecular translation occurs much more

readily than rotation.

It has been remarked that when a single crystal of a pure substance is. caused to

yield, its structure is fundamentally unaltered. This cannot hold, however, in the

case of an aggregate of a large number of crystals arranged at random, or a crystal

embedded in amorphous material. True, the material in the interior of each crystal

can retain its original properties, but near the crystalline boundaries the structure

must be violently distorted. As a result, it may be expected that the number of the

molecules of inferior stability will be largely increased. Elastic after-working in metals

should therefore be increased by overstraining or " cold-working." This, again, agrees

with experience.

The foregoing considerations lend support to the view that each crystal of a severely

cold-worked piece of metal is surrounded by an amorphous layer of appreciable

thickness. If such a piece of metal undergoes a shear strain greater than that which

can initiate yield in the normal crystalline substance, the average stress which is set

up must be above the normal yield stress, for the part due to the amorphous layers

must be the elastic stress corresponding with the strain, and this, by hypothesis, is

greater than the yield stress. This part, moreover, will increase with the strain. It

follows that yield in cold-worked metal should be less sharply defined, and should occur

at a higher shear stress than in the normal crystalline variety. That this is actually

the case is, of course, well known.

In the case of very large strains an important part of the shear stress must be taken

by the amorphous boundary layers, and as a result the maximum tensile stress may

reach a value sufficient to cause rupture of some favourably disposed crystals across

their planes of least strength. This is, perhaps, the actual mode of rupture in ductile

materials. On this view, the " ductility " of a metal depends simply on the relation

between the tensile strength of the " flaws " and the normal yield stress. A substance

whose ductility is small may still be " malleable," as hammering need not give rise

to large tensile stresses.

The formation of non-crystalline material at the intercrystalline boundaries, when a

piece of metal is over-strained, appears to provide an explanation of the sudden drop

in stress which occurs immediately after the initiation of yieldf in ductile metals.

* Guest and Lea, " Torsional Hysteresis of Mild Steel,'
5

' Eoy. Soc. Proc.,' A, June, 191?.

J
ftopE.RTSON and Cook, ' Koy. Soc. Proc.,' A, vol. 88, 1913, pp. 462-471.
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Remembering that the surface tension of a substance is the work done in forming unit

area of new surface, it will be seen that the tension of any surface of a crystal must

depend on the angle it makes with the crystal axis. Thus the surface tension parallel

to the planes of least strength must be less than that in any other direction.

Consequently, in a body composed of a number of crystals there must exist a mutual

surface tension at each intercrystalline boundary. Now, the theory of surface tension

shows that the magnitude of such a mutual tension is greatly diminished by making the

transition between the two bodies more gradual. Hence the formation of the amorphous

boundary layer involves a reduction in the surface energy of the crystals, and this is

shown in the experiments by a drop in the stress. If this account of the phenomenon is

complete, the drop in stress must be determined by the condition that the loss of strain

energy equals the reduction in surface* energy. The mechanism of the process appears

to be that the breaking up of the boundary, which must accompany yield, is resisted

by the surface tension, and yielding therefore requires a higher stress for its initiation

than for its maintenance.

According to this view, the loss of strain energy should be inversely proportional to

the linear dimensions of the crystals. Hence the results of different experiments should

show considerable variation in the magnitude of the drop in stress. This is actually the

case ; a single series of experiments on mild steel, by Robebtson and Cook, gave drops

varying from 17 per cent, to 36 per cent., while in other experiments as little as 7 per

cent, has been observed.

In the above series of experiments the average loss of strain energy was about

12 inch-lbs. per cubic inch. Assuming, for simplicity, that the crystals were cubes,

of, say, 0-001-inch side (which is a fair value for well-treated mild steel), the area of the

intercrystal surface was 3000 sq. inches per cubic inch. These figures give the average

intercrystal surface tension as # 004 lbs. per inch. This is certainly of the right order

of magnitude.

Many of the phenomena discussed above will be more complicated, in practice, if

the coefficient of expansion of the crystals is not the same in all directions. In such

an event, internal stresses will be set up in cooling, on account of the random arrangement

of the crystals, and these stresses must be taken into consideration in applying the theory.

There remains for consideration the problem of the fracture of metals under alternating

stress. It is known that fatigue failure occurs as the result of cracking after repeated

slipping on gliding planes, and the theory has been advanced* that this cracking is due

to repeated to and fro sliding and consequent attrition and removal of material from

the gliding planes. This theory presents some difficulties, in that it does not explain

how the attrition can occur, or the method of disposing of the debris.

A theory which is free from these objections may be constructed if it is supposed

that a change in volume occurs on the passage of the metal from the crystalline to the

amorphous state. This assumption is, of course, known to be valid for many substances

* Ewing and Humfrey, ' Phil. Trans./ A, 1902, p. 200.



THE PHENOMENA OF RUPTUKE AND FLOW IN SOLIDS. 191

at their melting points, but at lower temperatures there seems to be no definite

information available.

This assumption being granted, suppose that a piece of material which contracts on

decrystallising is being subjected to a stress cycle just sufficient to cause repeated

slipping in the most favourably disposed crystals. As a result, the material at the

boundaries of these crystals will become amorphous, and the quantity of amorphous

material will increase continuously as long as the repeated slipping goes on. But, by

hypothesis, the unstrained volume of the amorphous phase is less than the space it

filled when in the crystalline state. Hence all the material in the immediate neigh-

bourhood will be subjected to a tensile stress, and as soon as this exceeds a certain

critical value a crack will form. It has been observed above that the application of

a sufficiently large hydrostatic tension may be expected to make a ductile substance

brittle. Hence the crack may occur either in tension or in shear, according to the

properties of the material and the nature of the applied stress. Further alternations

of stress will cause this crack to spread until complete rupture occurs. This theory

makes the limiting safe range of stress equal to that which just fails to maintain

repeated sliding in the most favourably disposed crystals.

It may be asked why such cracking does not take place in a static test where the

quantity of amorphous material, once yield has fairly started, is presumably much
greater. The answer to this is two-fold. In the first place, if the material becomes

amorphous round all, or nearly all, the crystals of a piece of metal, it is evident that it

will contract as a whole and no great tensile stress will be set up. In the case where

only a few crystals yield, the tension arises from the rigidity of the unchanged surrounding

metal.

In the second place, even if some crystals do crack, the cracks will not, in general,

tend to spread through the ductile cores of the neighbouring crystals, unless the applied

load is alternating, on account of the equalisation of stress due to yield.

The safe limit of alternating stress will usually be less than the apparent stress

necessary to initiate yield in a static test, on account of initial stresses, including those

due to unequal contraction of the crystals.

The theory indicates that the cracking of the first crystal marks a critical point in

the history of the piece. At any earlier stage the effects of the previous loading may
be removed by heat treatment, or possibly by a rest interval, but once a crack has

formed this cannot be done. True, the tension may be relieved and the ruptured

crystal may even be compressed somewhat, but this cannot, in general, close the crack,

as cracking is not a " reversible " operation. An exception may occur if the top

temperature of the heat-treatment is sufficient to bring the molecules on either side

of the crack within mutual range by thermal agitation, but it is unlikely that this

can' happen save in the case of very small cracks.

If this theory is correct, it appears at first sight that the phenomenon of fatigue

failure must be confined to substances which contract on decrystallising. This, however
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is not necessarily so. If, for instance, a small thickness of material at the interface

between two crystals were to increase in volume, it could not be said without proof

that tensile stresses would not be set up thereby, in addition to compressions. In

some cases, in fact, it is obvious that there must be tensions. Thus, if the outer layer

of a sphere increases in volume, the matter inside must be subjected to a tensile stress.

The effect of overstrain on the density of metals is at present under investigation

at the Royal Aircraft Establishment. The work is not yet sufficiently complete for

detailed publication, but it may be mentioned here that the expected change in density

has been found, and that the results already obtained are such as to leave little room

for doubt that this change is in fact the cause of fatigue failure in metals. Thus, in

overstraining mild steel by means of a pure shearing stress, a decrease in average

density of as much as • 25 per cent, has been observed.

Some progress has also been made in the direction of estimating the internal stresses

set up as a result of the change in density, and it has been found that an average change

of the magnitude mentioned above could give rise to a hydrostatic tensile stress in the

cores of the crystals, of the order of 30,000 lbs. per sq. inch.

Dealing now with materials whose molecular sheet-formations are curved, it is at

once evident that all yield, or slide, phenomena must be absent, as possible gliding

planes do not exist. Thus, this case, though geometrically more complicated, is

practically much simpler than that in which the sheets are plane. The theoretical

properties of materials having the curved type of formation appear to correspond

exactly with those known to belong to brittle " amorphous " substances. Exactly

as in the case of crystalline materials, elastic after-working is explained by the inferor

stability of molecules near the boundaries of the units of molecular configuration, but

elastic hysteresis should not occur. If adequate precautions are taken to avoid secondary

tensile stresses, fracture of short columns in compression should occur at stresses of an

altogether higher order than in the case of crystals. In this connection it may be

remarked that the compressive strength of fused silica is about 25 times as great as

its ordinary tensile strength.

It appears from the foregoing discussion that the molecular orientation theory is

capable of giving a satisfactory general account of many phenomena relating to the

mechanical properties of solids, though closer investigation will perhaps show that

the agreement is in some cases superficial only. Such questions as the effects of unequal

cooling, foreign inclusions and local impurities, and the behaviour of mixtures of

different crystals, have not been dealt with ; it is thought that these are matters of

detail whose discussion cannot usefully precede the establishment of the general

principles on which they depend.

9. Practical Limitations of the Elastic Theory.

It is now possible to indicate the directions in which the ordinary mathematical

theory of elasticity may be expected to fail when applied to real solids.
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It is a fundamental assumption of the mathematical theory that it is legitimate to

replace summation of the molecular forces by integration. In general this can only

be true if the smallest material dimension, involved in the calculations, is large compared

with the unit of structure of the substance. In crystalline metals the crystals appear,

from the foregoing investigation, to be anisotropic and they must therefore be regarded

as the units of structure. Hence the theory of isotropic homogeneous solids may

break down if applied to metals in cases where the smallest linear dimension involved

is not many times the length of a crystal.

Similar considerations apply to solids such as glass, save that here the units of

structure are probably curved.

The most important practical case of failure is that of a re-entrant angle or groove.

Here the theorv may break down if the radius of curvature of the re-entering corner

is but a small number of crystals long. An extreme instance is that of a surface

scratch, where the radius of curvature may be but a fraction of the length of the

crystals.

In the case of brittle materials the general nature of the effect of scratches on strength

may be inferred from the theoretical criterion of rupture enunciated in section 2 above.

Whether the material be isotropic or anisotropic, homogeneous or heterogeneous, it is

necessary on dimensional grounds that the strain energy shall depend on a higher power

of the depth of the scratch than the surface energy. It follows that small scratches

must reduce the strength less than large ones of the same shape. Hence, where the

tenacity of the material, under " uniform " stress, is determined by the presence of

" flaws/' it must always be possible to find a certain depth of scratch whose breaking

stress is equal to that of the flaws. Evidently such a scratch can have no influence

on the strength of the piece. Deeper scratches must have some weakening effect,

which must increase with the depth, until in the limit the strength of very large grooves

may be found by means of the elastic theory and the appropriate empirical hypothesis

of rupture.

In the case of ductile metals, the effect of scratches is important only under alternating

or repeated stresses. On the theory advanced in the preceding section, fatigue failure

under such stresses is determined by phenomena which occur at the intercrystalline

boundaries. Hence the strength of a scratched piece is fixed, not by the maximum
stress range in the corner of the scratch, but by the stress range at a certain distance

below the surface. This distance cannot be less than the width of one crystal, and it

may be greater. Elastic theory suggests that the stress due to a scratch falls off very

rapidly with increasing distance from the re-entrant corner, so that the relatively small

effect of scratches in fatigue tests is readily explained.

Possibly many published results bearing on this matter depend more on initial skin

stresses than on sharp corner effects.
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10. Methods of Increasing the Strength of Materials.

The most obvious means of making the theoretical molecular tenacity available for

technical purposes is to break up the molecular sheet-formation and so eliminate the

" flaws." In the case of crystalline material this has the further advantage of eliminating

yield and probably also fatigue failure.

In materials which normally have curved sheets, the molecular fields of force are

presumably asymmetrical, and the process indicated above would lead of necessity

to a random arrangement, which might be unstable. It has been seen that in glass

and fused silica it is actually unstable, except in the case of the finest fibres.

As regards crystalline materials, however, in which the fields of force must have

some sort of symmetry, there seems to be no reason why there should not be possible

a very fine grained stable configuration, which could be derived from the ordinary

crystalline form by appropriate rotations of certain molecules to new positions of stable

equilibrium, in such a way as to break up the gliding planes. The grain of such a

structure need be but a few molecules long, and its strength would approximate

to the theoretical value corresponding with the heat of vaporisation.

There is some evidence that mild steel which has been put into the amorphous

condition by over-strain tends, under certain conditions, to take up a stable fine-grained

formation of this kind, in preference to resuming its original coarse crystalline configura-

tion, in that a temperature of 0° C. appears to prevent recovery from tensile over-

strain.*

These considerations suggest that if a piece of metal were rendered completely

amorphous by cold-working, and then suitably heat-treated, its molecules might take

up the stable strong configuration already described. The theory indicates, however,

that over-straining tends to set up tensile stresses in the unchanged parts of the crystals

which may start cracks long before decrystallisation is complete. Such cracking could

be prevented if the over-straining were carried out under a sufficiently great hydrostatic

pressure, and this line of research seems to be well worth following up. It might, of

course, be found that the requisite pressure was so enormous as to render the method

unworkable, but if the theory is sound there seems to be no other reason why definite

results should not be obtained.

The problem may be attacked in another way. As has been seen, the theory suggests

that the drop in stress at the initiation of yield is due to the surface energy of the inter-

crystal boundaries. Thus the yield point may be raised by " refining " the metal,

i.e., so heat-treating it as to reduce the size of the crystals. The limit of refinement is,

doubtless, reached when each " crystal " contains but a single molecule and the material

is then in the strong stable state already described.

Refining is also of great value in connection with resistance to fatigue failure. Suppose,

in accordance with the foregoing theory of fatigue, that one crystal has been fractured,

* Coker, ' Phys. Rev.,' 15, August, 1902.
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then the general criterion of rupture shows that the crack cannot spread unless the

material is subjected to a certain minimum stress, which is greater the smaller the crack.

Thus, reducing the size of the crystals increases the stress necessary to cause the initial

crack to extend. There is therefore a critical size of crystal for which the stress-range

necessary to spread the crack is equal to that necessary to start it. Until the refining

has reached that stage it can have no effect; on the magnitude of the safe stress range,

but from that point on the range must increase progressively with refinement until the

limit is reached, as before, when each " crystal " contains but one molecule.

It therefore appears that refining is one avenue of approach towards the ideal state

of maximum strength. Strangely enough, another line of argument suggests that the

reverse of refinement might be effective in securing the desired result, in certain special

cases. If a wire is required to withstand a simple tension, it seems that the best

arrangement is that in which the strongest directions of all the molecules are parallel to

the axis of the wire. This is equivalent to making the wire out of a single crystal.

The theoretical tenacity would not be obtained, however, if the gliding planes made

with the axis angles other than 0° C. and 90° C, as yield would occur.

If, in passing from the normal crystalline to the strong fine-grained state, the necessary

orientation of the molecules were performed in accordance with some regular plan,,

the resulting configuration would possess some kind of symmetry, and the material

might therefore exhibit crystalline properties. In cases where a substance exists in

nature in several different crystalline forms, of which one is much stronger than the

others, it may be that the strong modification is of the fine-grained type here considered.

Thus, diamond may be a fine-grained modification of carbon. If this view is correct,

it suggests that the transformation of carbon into diamond requires, firstly, the existence

of conditions of temperature and pressure under which diamond has less potential

energy than carbon ; and, secondly, the provision of means for causing relative rotation

of the molecules. In the attempts which have so far been made in this direction,

attention seems to have been concentrated on satisfying the former requirement, the

possible existence of the latter one having been overlooked. The most obvious way

of satisfying it, if the mechanical difficulties could be overcome, would appear to be

the application of suitable shearing stresses in addition to the hydrostatic pressure.

11. Application of the Theory to Liquids.

A detailed discussion of the properties of liquids, in the light of the present theory,

would scarcely fall within the scope of this paper. One prediction which has been

made, however, and which has been verified experimentally, affords such a remarkable

confirmation of the general theory that it is felt that no apology is necessary for

introducing it here. Consider a solid composed of molecules whose attraction is a

function of orientation, the molecules being arranged in groups, in accordance with

the theory outlined in the preceding pages. If the temperature of this body be supposed

to be increasing, it will be seen that at some temperature the kinetic reactions due to

vol. ccxxi.

—
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the thermal vibrations must overcome the minimum attractions of the molecules in each

group. It is clear, therefore, that at this temperature the substance will be unable to

withstand shearing stresses. At the same time it cannot vaporise, as the molecules

must still be held together in chains by their maximum attractions. In other words,

the transformation which has been discussed is simply the liquefaction of the solid.

This view of the phenomenon of melting indicates that the molecules of liquids are

in general arranged in groups or chains, of a length comparable with that of the

structure ascribed to solids in the preceding wrork, or, say, 104 molecules.

If, therefore, a liquid be contained in a solid boundary which it w^ets, the ends of

these chains may be expected to attach themselves to the solid ; and if at any point

the distance between the bounding walls is less than the length of the chains, some of

the latter will attach themselves to both walls and hinder the free flow of the liquid

and the relative movement, if any, of the boundaries. At such a point the liquid wall

act as a solid under any stress which is insufficient to break the chains.

This has been verified experimentally. The apparatus consisted of a polished steel ball

1 inch in diameter, and a block of hard tool steel containing a circular hole about 4 inches

long. The hole was carefully ground, after hardening, to a diameter about 0*0001 inch

greater, at its smallest part, than the diameter of the ball. When both were dry the ball

passed freely through the hole. If, howrever, they were wretted with a liquid, consider-

able pressure was necessary to force the ball through. This resistance possessed the

characteristic " stickiness " of solid friction, and was exactly the kind of resistance

which would have been expected in forcing the dry ball through a hole which wras too

small for it.

To show that the resistance was a true " solid stress " and not due merely to viscosity,

the apparatus was on one occasion left for a week, with the weight of the ball supported

by the stress in the liquid (paraffin oil). The hole was vertical, so that there was no

normal pressure between its surface and the surface of the ball. During this period

no motion whatever could be detected.

It is essential to the success of these experiments that the ball and hole should be

thoroughly wetted by the liquid. For this reason the liquids used have been chiefly

paraffin oil and lubricating oils, but on one occasion the effect was obtained with water.

The present theory suggests a reason for the very low tensile strength of liquids.

If a liquid is composed of a random aggregation of chains of molecules, it may reasonably

be expected to contain regions of dimensions comparable with, but smaller than, the

length of the chains, across which no chains run. Rupture of the liquid will evidently

occur by the enlargement of these cavities. Now the tension, R, necessary to enlarge

a spherical cavity of diameter, D, in a liquid of surface tension, T, is given by

R = 4T/D.

In the case of water, the tensile strength, R, is about 70 lbs. per sq. inch at ordinary

temperatures, while T is about 0-00042 lbs. per inch. Hence the cavities, if spherical,

must be at least • 000024 inch in diameter. This is of the order indicated by the theory.
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The foregoing conclusions are of especial interest in their relation to the theory* of

Eosenhain,* on which many of the properties of metals, and particularly " season

cracking " under prolonged stress, are explained by supposing that the crystals are

cemented together by very thin layers of amorphous material having the properties

of an extremely viscous undercooled liquid. The experiments described above show

that fluidity is not a property which can be ascribed a priori to such films. Hence

if the view of Eosenhain and Archbutt were to be definitely established, it would

be necessary to regard it, not as a theory of season cracking in terms of the known

properties of materials, but as a deduction of the properties of the intercrystalline

layers from the phenomena of season cracking. Looked at in this way, it wrould be

of extreme interest, for it would show that the molecular arrangement of the inter-

crystalline layers could not be of the coarse-grained type characteristic of the normal

states of solids and liquids.

It is clear that the foregoing theory of liquids is not free from objection, and that in

some respects it appears to be less satisfactory than existing theories. The most

obvious objection is that it seems to be incompatible with accepted determination of

the molecular weight of liquids. Since, however, these experiments are based ultimately

on kinetic considerations, the author believes that this difficulty will not in fact arise

unless the requisite bonds between the molecules of each group are found to be sufficiently

strong to cause appreciable modification of the average molecular kinetic energy.

12, Summary of Conclusions.

(1) The ordinary hypothesis of rupture cannot be employed to predict the safe range

of alternating stress which can be applied to metal having a scratched surface. The

safe range of an unscratched test piece appears to be slightly less than the yield range,

but if the surface is scratched the safe range may be several times the range which

causes yield in the corners of the scratches.

(2) The " theorem of minimum potential energy " may be extended so as to be capable

of predicting the breaking loads of elastic solids, if account is taken of the increase of

surface energy which occurs during the formation of cracks.

(3) The breaking load of a thin plate of glass having in it a sufficiently long straight

crack normal to the applied stress, is inversely proportional to the square root of the

length of the crack. The maximum tensile stress in the corners of the crack is more

than ten times as great as the tensile strength of the material, as measured in an ordinary

test.

(4) The foregoing observation is in agreement with the known fact that the observed

strength of materials is less than one-tenth of the strength deduced indirectly from

physical data, on the assumption that the materials are isotropic. The observed

* W. Eosenhain and D. Ewen, " Intercrystalline Cohesion in Metals," ' J. Inst. Metals/ vol. 8 (1912) ;

and W. Eosenhain and S. L. Archbutt, " On the Intercrystalline Fracture of Metals under Prolonged

Application of Stress (Preliminary Paper)," ' Eoy. Soc. Proc.,' A, vol. 96 (1919).
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strength is, in fact, no greater than it would be, according to the theory, if the test

pieces contained cracks several thousand molecules long.

(5) It has been found possible to prepare rods and fibres of glass and fused quartz

which have a tenacity of about one million pounds per square inch (approximately

the theoretical strength) when tested in the ordinary way. The strength so observed

diminishes spontaneously, however, to a lower steady value, which it reaches a few

hours after the fibre has been prepared. This steady value depends on the diameter

of the fibre. In the case of large rods it is the same as the ordinary tenacity, whereas

in the finest fibres the strength diminishes but little from its initial high value. The

relation between diameter aad strength is of practically the same form for glass fibres

as for metal wires.

(6) If it is assumed that intermolecular attraction is a function of the relative

orientation of the attracting molecules, it is possible to construct a theory of all the

phenomena mentioned in (3), (4) and (5) above. In the case of crystalline substances

the theory also appears to explain yield and shearing fracture ; elastic hysteresis
;

elastic afterworking ; the fracture in tension of ductile materials and the flow of brittle

materials under combined shearing stress and hydrostatic pressure ; the drop in stress

which occurs on the initiation of yield in ductile substances ; fatigue failure under

alternating stress ; and the relatively slight effect of surface scratches on fatigue

strength. In the case of non-crystalline materials the theory explains elastic after-

working and the great strength of short columns in compression.

(7) The theory shows that the application of the mathematical theory of homegeneous

elastic solids to real substances may lead to error, unless the smallest material dimension

involved, e.(/., the radius of curvature at the corner dn the case of a scratch, is not many

times the length of a crystal.

(8) It should be possible to raise the yield point of a crystalline substance by

"refining" it, until at the ultimate limit of refinement the yield stress should be of

the same order as the theoretical strength. It should also be possible similarly to

increase the tenacity. Up to a certain stage the fatigue range should be unaffected by

refilling, but thereafter it should increase in the same degree as resistance to static stress.

(9) The theory requires that a thin film of liquid enclosed between solid boundaries

which it wets should act as a solid. Experimental confirmation of this has been obtained.

In conclusion, the author desires to place on record his indebtedness to many past

and present members of the staff of the Koyal Aircraft Establishment for their valuable

criticism and assistance, and also to Prof. C. F. Jenkin, at whose request the work

on scratches was commenced.

[Note.—It has been found that the method of calculating the strain energy of a cracked plate^

which is used in Section 3 of this paper, requires correction. The correction affects the numerical values

of all quantities calculated from equations (6), (7), (8), (10), (11), (12) and (13), but not their order of

magnitude. The main argument of the paper is therefore not impaired, since it deals only with the order

of magnitude of the results involved, but some reconsideration of the experimental verification of the

theory is necessary.]


